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ABSTRACT

We propose a new measure of perceptual image quality based
on a multiple channel human visual system (HVS) model for
use in digital image compression. The model incorporates the
HVS light sensitivity, spatial frequency and orientation
sensitivity, and masking effects. The model is based on the
concept of local band-limited contrast (LBC) in oriented spatial
frequency bands. This concept leads to a simple masking
function. The model has the flexibility to account for the
changes in frequency sensitivity as a function of local
luminance and is consistent with masking experiments using
gratings and edges. Numerical scaling experiments with a test
panel and a set a test images that were coded using different
coding algorithms showed that the proposed measure correlates
better with perceptual image quality than the conventional SNR
measure.

1. INTRODUCTION

In optimization and evaluation of digital image compression
algorithms, the signal to noise ratio (SNR) is generally used as
a measure of image quality. However, the use of a measure of
image quality that is based on properties of the human visual
system (HVS) will in general lead to a better visual image
quality of the reconstructed image [1].

Properties that are usually incorporated into HVS models for
perceptual image quality are the sensitivity to light, the spatial
frequency sensitivity and masking effects. The sensitivity to
light is the dependence of the senmsitivity on the local
luminance. In general, the HVS is more sensitive in dark areas
than in light areas of the image. The spatial frequency
sensitivity of the HVS decreases for high frequencies. The
frequency sensitivity is usually described with a fixed low-pass
or a band-pass filter [2]. However, the frequency sensitivity is
dependent on the background luminance. The frequency
sensitivity increases and the peak shifts to higher frequencies
as luminance increases. The masking effects describe the
influence of the image contents on the visibility of distortions.
Masking effects occur mainly in the vicinity of edges and in
textured regions of images.

Recently, several models of the HVS have been proposed that
are based on a hierarchy of spatially oriented band-pass filters
[3,4,5,6]. The existence of this hierarchy is suggested by a large
number of masking experiments with gratings {7]. Masking
effects in these models are explained by threshold elevation in
the spatial frequency bands. Distortions in a spatial frequency
band are masked by the image contents in that spatial
frequency band. Experiments show that at edges maximum
masking occurs at the exact position of the edge [8]. However,
when linear phase filters are used in the HVS model, the
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outputs of the band-pass filters will have Zero-crossings at the
exact positions of edges. When a masking function is used that
is based on the exact outputs of these filters, no masking is
predicted at the exact positions of edges.

We propose a new model for perceptual image quality that is
based on a multiple channel HVS model. We propose a new
method to calculate the masking effects that is consistent with
masking experiments with gratings as well as edges. The model
is centered around the concept of local band-limited contrast
(LBC). The model also enables the modeling of the change of
spatial frequency sensitivity as function of local luminance, as
opposed to the fixed sensitivity in most current models.

2. HVS MODEL

Figure 1 shows the structure of the proposed HVS model. The
inputs of the model are the original and the distorted image in
the luminance domain (in Cd/m?). Usually the images will be
specified in terms of gray levels, which means that the transfer
from gray levels to screen luminance will have to be calculated
before the HVS model can be applied. This transfer function
depends on the display device that is used and hence we have
chosen not to incorporate it into the model.

Qriented
Frequency,
Bands

oo eey e
H

Conversion to -

Distorte:
image

La
Detection

LBC J

Combination
hto Measure oq
image Quality
Oriented

Frequency
Bands / e

Conversion to =3 ol

LBC _L l Datection

Figure 1: The proposed HVS model.
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The original and the distorted image are first transformed into
Local Band-Limited Contrast (LBC) for different frequency
bands and orientations. The LBC incorporates the effects of
light and frequency sensitivity of the HVS. After the LBC
calculation, the masking for the different frequency bands and
orientations is calculated as a function of the envelopes of the
LBCs of the original and the distorted image. It turns out that
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the concept of LBC leads to a very simple masking function.
The last step of the model is the combination of the responses
into a measure of perceptual image quality.

2.1. Local band-limited contrast

Figure 2 shows the calculation of the local band-limited
contrast. The input image is filtered by a set of low-pass filters
and fan filters, after combination this leads to 30 filtered
versions with five spatial frequency bands and six orientations.
The next step in the modet is the calculation of local contrast.
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Figure 2: The calculation of LBC.
2.1.1. Low-pass filtering

Evidence from grating and other experiments suggests that the
HVS contains band-pass filters with a bandwidth of 1 octave
[7]. The original and the distorted image are filtered by a set of
low-pass filters with a bandwidth that decreases with a factor 2
for each filter:

Lk(x,y)=fL0W,k(x,y)*I(x,y) k=1.K,

ey
where I(x,y) is the luminance distribution of the .image,
fiowx(x,y) is the low-pass filter with index k and Li(xy) is the
low-pass filtered version of the image with index k. The low-
pass filters were designed using the method of Speake and
Mersereau [10]. The band-pass filtered versions of the image
that result from taking differences of low-pass filtered versions
of the image have a bandwidth of 1 octave.

2.1.2. Fan filtering

The next step in the model is the application of orientation
sensitive fan filters to band-pass filtered versions of the image:

fFAN.l(xvy)*{ L. (x.y)-L, (x,y)}
V k=1.K-1,I=1.L

Seana Y (x,y)-L, (x.¥)}
Vk=K =1.L

B, ,(x.y)= @
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where By (x,y) is the oriented band-filtered version of the
image and frany (x.y) is the fan filter. Experiments give
different estimates for the orientation bandwidth depending on
the type of experiment that is performed. We choose an
orientation bandwidth of 30 degrees for the fan filter and a set
of six fan filters for each band-filtered version of the image.
The fan filters were designed using the method of Antoniou and
Lu[11].

2.1.3. Local contrast calculation

Parameters of visual stimuli in most visual experiments are
expressed in terms of contrast. As we wish to incorporate the
results from these experiments into our model, we have to
convert the frequency bands Bix,y) into some measure of
contrast.

For simple stimuli that are symmetric relative to the
background luminance, contrast is usually defined as Weber
contrast [7]:

AL

C, =T
where AL is the luminance difference relative to the
background and L is the background luminance. An alternative
definition that is often used is the Michelson contrast [7]:

3

L -L .
Cm= Lmax me ’ (4)
max — min

where Ly and Lm; are the maximum and minimum
luminance, respectively. In the case of our model these
definitions cannot be used because a real image is not
symmetric and these definitions are global quantities that
depend on the average luminance of the entire image. We used
a modified version of the definition by Peli {9], namely the ratio
between the frequency band under consideration and a lowpass
version of the image. Basically this means that the lowpass
version is seen as the local image average for the frequency
band considered. In this sense this definition is similar to the
Weber definition:

B (x,
PR TGO R )
LBC _ K, +L . (x.y) 5
k (x,y)= B, (x.y) 6]
=V k=ll=1.L
K. +L

Here LBCy (x,y) is the loc_al band-limited contrast for frequency
band k and orientation [, Lj is the average of the image and Ay,

and Ki; are constants that can be used to model the frequency
and orientation sensitivity of the HVS. By calculating the LBC
in this way, we have arrived at a measure of local contrast that
is normalized to visibility threshold and that depends on local
image properties. The constants A and K give the flexibility to
incorporate the luminance dependence of the frequency
sensitivity into the model. For use of the model in a certain
application, the constants depend on the expected luminance
range of the display device, the number of vertical pixels in the
image, and the viewing distance. In the experiments described
below, we fitted the constants to the expression for the



frequency sensitivity by Barten [2] combined with an
orientation sensitivity.

We have now arrived at the local band-limited contrast that is
normalized to threshold. When the LBC is equal to one, the
frequency component in that frequency band and orientation
will be precisely at visibility threshold, taking into account
light and frequency sensitivity.

2.2. Envelope detection

For the calculation of the masking at a certain position in the
image in a certain frequency band, we use the envelope of the
LBC. This leads to the same predictions for the experiments
with gratings as the use of the LBC itself, but the advantage is
that in the vicinity of edges maximum masking will be
predicted at the exact position of the edge. The envelope of the
LBC will have a local maximum at the exact position of edges
and a masking function based on the envelope of the LBC will
lead to a correct prediction of edge masking, as visual
experiments indicate that maximum masking occurs at the
exact positions of edges [8].

2.3. Threshold Elevation

The masking in the frequency bands is modeled by the
threshold elevation function. The threshold elevation function
describes how much the threshold for a test stimulus is
increased by a masking stimulus. In the case of our model the
test stimulus is the distortion that is normalized to visibility
threshold by taking the LBC difference between the original
and the distorted image, and the masking stimulus is the image
itself. The threshold elevation function is based on the
minimum of the envelope of the LBC of the original and the
distorted image. The question could be asked whether it would
be sufficient to derive the masking function from the LBC of
either the original or the distorted image, but Daly showed that
such an asymmetric model leads to incorrect predictions [6].

Our model is entirely symmetric, and the interchange of the
original and the distorted image leads to the same perceptual
image quality. The threshold elevation function turns out to be
very simple, because it is approximately the same for all
frequency bands, orientations and luminance levels if we use
the LBC for the calculation of masking [12]. The threshold
elevation function is shown in figure 3 and was taken from
Daly [6]. When the envelope of the LBC is below 1 (below
threshold) no masking will occur (the threshold elevation is
equal to 1), and when the envelope of the LBC increases the
amount of masking increases. The masked [ BC difference
AMLBCk l(x, y) is calculated as a function of the LBC of the

original image LBC, ,(x,y), the LBC of the distorted image
8 8k

LBc;: l(x,y) and the threshold elevation function IEk l(x,y):

3
LBCk,l (x,y)—LBCk,l (x,y)
TEkJ(x,y)

AMLBCk,l (x,y) = (6)
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Figure 3: The threshold elevation as a function of the envelope
of the LBC.

2.4. Response combination

The last part of the model is the combination of the masked
LBC differences in the different frequency bands, orientations,
and positions into a measure of perceptual image quality. This
is the least understood part of the visual system because it
involves more abstract processes. We propose a simple
calculation that is based upon a vector norm over frequency
bands and positions. The resulting perceptual error measure
(PEM) is equal to:

aff Y
Z|x
x,y|k,l

PEM

lAMLBCkJ(x,y) @)

where a, B, and y are constants that influence how the
responses in different frequency bands, orientations and
positions combine into the perceptual error measure. The
exponents were determined by means of a number of
experiments that are described in the next section.

Another possibility is to combine the responses at each
position, which leads to an image with values that represent a
local visibility of distortions. In coding applications such a local
measure of image quality is probably more useful than a global
one.

3. EXPERIMENTS

In order to estimate the parameters of the response combination
as described in the last section and to evaluate the performance
of the model in comparison with conventional measures of
image quality (SNR) we performed experiments with a test
panel.

3.1. Experimental conditions

The images in the experiments were the Build, Kiel, Collet,
Clown, Karn and Mobile images. The images had a size of
512x512 pixels and were coded using PCM, DPCM, DCT and
SBC coding schemes at several different bit rates. This resulted
in 108 different images. The test panel consisted of 5 experts
and 2 non-experts in image coding. The subjects were asked to
give a number between 1 and 10 for the perceptual image
quality of the images that were shown, a 1 for a very poor



quality and a 10 for a very good quality. Each image was shown
4 times to each subject. The images Karn and Mobile were only
shown to 4 subjects. The viewing distance was 6 times the
screen height.

3.2. Experimental results

The parameters A and K of the HVS model were fit to the
experimental conditions (viewing distance and display
luminance range). For every image we calculated the
perceptual error measure with different settings for a, §, and .
The experiments showed that the largest correlation between
the perceptual error measure and the judgments could be
obtained by using a=1.5, B=1.0, and y=0.33. The results for
this combination of parameters is shown in figure 5. The results
for the conventional Peak to Peak Signal to Noise Ratio
(PSNR) are shown in figure 4. The use of the new measure
leads to an improvement in the correlation coefficient from 0.78
to -0.84 between the measure of image quality and the
judgments when compared with the PSNR measure.
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Figure 4: The measured perceptual image quality plotted
against the PSNR.

4. Conclusion

The tests that were performed to evaluate the quality of the
model only give a first indication of the performance of the
model. The real test for the model will be the incorporation of
the model into a coding scheme and measuring the number of
bits that can be saved to achieve perceptual transparency (no
visible differences with the original) compared to the same
coding scheme optimized with a conventional measure.
Although the response combination in the model is too simple
to describe the response combination in the HVS, in our
opinion the model is still very useful for image compression,
even without response combination. Further research is needed
for a better modeling of the response combination and the
incorporation of color and motion into the model for use in
video compression.
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Figure 5: The measured perceptual image quality plotted
against the new perceptual image quality measure.
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