NEAR-LOSSLESS COMPRESSION OF MEDICAL IMAGES

M. Das', D. L. Neuhoft?, and C. L. Lin'
'Dept. of Electrical Eng., Oakland University, Rochester, M1 48309
Dept. of Electrical Eng. and Comp. Sc., University of Michigan, Ann Arbor, MI 48109

ABSTRACT

This paper studies the characteristic properties of a specific
class of near-lossless image compression schemes which
consists of a lossless coder followed by a uniform scalar
quantizer. Three specific instances of such schemes are
investigated; namely, differential pulse code modulation,
hierarchical interpolation, and two-dimensional space-
varying multiplicative  autoregressive coders. The
compression gains attainable with such schemes are studied
and results of experiments conducted on several medical
images are presented.

1. INTRODUCTION

The past two decades have witnessed a great deal of work
in image coding, with a recently rising crescendo of
activity. As a result of this, a multitude of different image
coding techniques have emerged [1],{2]. All these
techniques can be broadly categorized into two classes;
namely, lossy and lossless. A lossless scheme typically
achieves a compression ratio of the order of two only, but
will allow exact recovery of the original image from the
compressed version; a lossy scheme will not allow exact
recovery, but can attain much higher compression ratios,
e.g., twenty or more.

As against strictly lossless or lossy compression, this paper
investigates the performance of a class of near-lossless
image compression schemes that attempts to improve the
compression efficiency of lossless coders by using a
uniform scalar quantizer to quantize their residuals. The
compression gain attainable with such schemes is
investigated and the results are experimentally validated on
several medical images by comparing the first order
entropies of the residuals.

The organization of this paper is as follows. Section II
introduces three near-lossless coding schemes based on
differential pulse code modulation (DPCM) [4], hierarchical
interpolation (HINT) [4], and two-dimensional space-
varying multiplicative autoregressive (2-D SMAR) coders
[5]- Section IIl presents some comparative experimental
results and finally, some concluding remarks are given in
Section IV.
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2. NEAR-LOSSLESS CODING OF DIGITIZED
IMAGES

There exists a variety of methods by which a lossless
coder can be converted to a near-lossless one, which will
confine the reconstruction errors for individual pixels
within some predefined limits. For example, one may
assure a reconstruction error of either 0, or 1 by simply
dropping the least significant bit of the image. However,
this clearly results in only a one bit gain in the average bit
rate. Similarly, dropping the two least significant bits
assures a gain of only two bits, while allowing errors to lie
within [0,3]. Therefore, techniques that allow a better
tradeoff between compression gain and reconstruction error
size are preferred.

In this paper, we study a well known class of near-lossless
coders that result from uniform scalar quantization of a
lossless coder's residuals. For this purpose, we will focus
on three types of predictive lossless coders, which are
known to perform better than others [4],[5]. The methods
chosen are: i) DPCM, which is a nonadaptive predictive
coder, ii) HINT, which is a hierarchical predictive coder,
and iii} 2-D SMAR, which is an adaptive predictive coder.
The underlying ideas are first illustrated using DPCM
method, and then near-lossless coders based on HINT and
SMAR are discussed.

2.1. A Near-Lossless Coding Scheme Based on
DPCM Technique

Two-dimensional differential pulse code modulation
(DPCM) is a simple and well known technique for image
data compression [3], which exploits the correlation of a
pixel value with its four nearest causal neighbors. A
lossless DPCM image compression technique [4] can be
easily be converted to a near-lossless one as follows.

Assuming {f(i,j),1<i<L,1<j<L} denote the pixel values of
the original digitized image, the predicted value, {(iy), of
f(1,)) is given by

flij) = piGij-1) + pHG-1) - PFG-14-1), (1)

where %(.,.) denotes the reconstructed value of f(.,.), and p,
the correlation coefficient, is usually chosen to be 0.95.
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Next the prediction error, d(i,j), and its quantized value,
d(i,j), are computed as

d(i,j) = (i,j) - R (1b)
d(i,j) = QIdG.j)], (1c)

where R[.] denotes the rounding operator to the nearest
integer, and Q[.] is a center-clipping quantizer whose input-
output relationship is dictated by the maximum allowable
reconstruction error (MARE). For example, if MARE is %1,
the input-output relationship of Q is chosen as,

Q[k] = m for integer ke[m-1,m+1], (2a)

where m = 0, £3, +6, etc. Similarly in general if MARE is
+n, choose Q as,

Q[k] = m for integer ke [m-n,m+n], (2b)
where m = 0, £(2n+1), £(4n+1), etc.

Finally, the reconstructed pixel value, f'(i,j), of f(a,)) is
obtained as

1) = RITG)] + dGi,), 3)

and at the end, after repeating the above steps for each
pixel in a recursive fashion, the sequence {d(i,j)} is entropy
coded and transmitted. At the receiver, the reconstructed
image is obtained recursively by first computing f(i,j) from
(1a), rounding it and then adding the same to the decoded
value of d(i,j), as shown in (3).

The above compression scheme is a near-lossless one
because by choosing "n" in equation (2b) to be small, a
nearly perfect version of the original image can be
reconstructed at the receiver end. For instance, if the
original image is 8-bit deep, the peak-signal-to-noise-ratio
(PSNR) of the reconstructed image is given by

PSNR = 20*log,,(255/n), )

which equals 48.13 db for n=1 and 42.11 db for n=2. In
practice, reconstructed images having PSNR greater than or
equal to 35 db are found to be hardly distinguishable from
the original ones.

Next, the above ideas are extended to HINT and SMAR
coders below.

2.2. A Near-Lossless Coding Scheme Based on HINT
Method

The hierarchical interpolation (HINT) [4] is a lossless
coding scheme that begins with a low-resolution version of
the orginal image, P, and successively generates the
higher resolutions P,, 1<k<4, using interpolations. The
lowermost resolution, P, is entropy coded and transmitted
first. Thereafter, in a hierarchical fashion, the interpolation
scheme is used to generate estimates of the unknown pixel
values of P, by calculating the average of its four nearest
neighbors that are provided by P, ,. The estimates are
rounded to their nearest integers and then subtracted from
the true pixel values. The difference signals pertaining to
each of the higher resolutions, D, 1<k<4, are also entropy
coded and transmitted.

As in the case of DPCM, the above scheme can be
converted to a near-lossless one by first quantizing the
residuals, D,, and calculating the reconstructed version, f’k,
of P,, before carrying out interpolation to generate the next
higher resolution. In this case then the quantized residuals,
D,, 1<k<4, are encoded and transmitted. The quantizer
used is same as the center-clipping one described in the
previous Section.

2.3. A Near-Lossless Coding Scheme Based on 2-D
SMAR Coders

2-D SMAR is an adaptive predictive coder that has been
found to be very efficient for lossless compression [5].
Such predictors are most easily described using delay
polynomials (D-transforms). In this notation, an image f is
represented as a polynomial

F(D\,D,) = E fij) D,"D;”, &)
i
where f(i,j) D,”D,” represents the fact that the pixel at
location (i,j) has value f(i,j). Also, the operation of a linear
predictor,
y(i.j) = X p(k)) fli-kj-D), ©®

3

may be described by

Y(D,,D;) = F(D,,D,) P(D,,Dy), (M
where o
Y(D,D,) = )3 y(ij) D;"Dy?, (®
1)
and o
P(D,,D,) = Z p(iJ) DD, %
1)
In MAR [6],
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P(D,,.D,)=1-A(D,,D,), (10

where A(D,,D,) is the product of a number of low degree
polynomials. This yields a high degree polynomial (and a
large prediction context) described by just a few parameters.
For example, we have had excellent success with the 4x4
nonsymmetric half-plane (NSHP) predictor {6] characterized
by .
A(D,Dy = (1+31D2'l)(1+azD1-1)(1+33D1-]D2)

(1+a,D,"'D,;", (1

which uses only four coeffcients, but results in the context
of 11 pixels shown in Figure 1. It is further shown in [5]
that this type of predictor works better when it follows the
simple, nonadaptive predictor

b(ij) = 0.25*[f(i-1j)+(ij-1)+HG-1j-D+HG-1j+1)]. (12)

That is, the MAR predictor is applied to the residuals of the
above predictor. The first-stage of the predictor can be
thought of as removing the space-varying mean.

The SMAR near-lossless coder works in a block-by-block
fashion. At the transmitter end, the coding for each block
proceeds as follows. First, the coefficients of A(D,,D,) are
estimated using the so called recursive pseudolinear
regression (RPLR) method [6],[7], and the predictor,
P(D,,D,) to be utilized for the block is calculated from the
estimated 2-D SMAR model, A(D,,D,), as

P(D,,D,) = 1 - A(D,,D,). (13)
Next, the coding proceeds recursively in the following
manner:

calculate approximate space-varying mean: -

B(i.) = R(1/4)A(,j-1) + TG-1,5-1) + Fi-1,5)

L)L (149)
calculate zero-mean pixel:
y(i) = (i) - b(ii), (14b)
predict y(i,j) and calculate residual:
§(i.3) = X pkD) §(-k,-D, (14c)
1)
y(i) = R[FGEHL (14d)
d(i,j) = y(iJ) - y.(i.)), (14e)
quantize residual: a(i,j) = Q[d(i,)], (14)

reconstruct y(i,j) and f(ij) :

§(i,) = y,(i) + d(ij),
f) = 9G.0) + b(i.j)-

Finally, the quantized residual sequence, {d@,p1, is entropy
coded using an optimal encoder and transmitted.

(14g)
(14h)

At the receiver, the reconstructed image 1s obtained
recursively by first computing b(i,j) from (14a), next
calculating 3(1,j) from (14c¢),(14d) and (14g), and finally
computing f(1,j) from (14h).

Next, the compression gain attainable using the above
near-lossless coders is discussed above

2.4, Expected Compression Gain

Assume that the residuals of the underlying lossless coder
consist of integer values over some interval, [-I,+I], and
have a probability distribution, p(1), -I<i<I. Next, suppose
the residuals are quantized to allow a maximum
reconstruction error of =n. For the purpose of an
approximate analysis, if we assume that p(i+k), -n<k<n are
approximately equal, then the near-lossless coding achieves
a compression rate of about log,(2n+1) bits less than
lossless coding. For example, if n = 1, this is a savings of
{)qg23 = 1.58 bits/pixel, and if n=2, this is a savings of 2.3
its.

Finally, some experimental results are given below.
3. EXPERIMENTAL RESULTS

The performance of the three near-lossless coding schemes
presented above was evaluated using four X-rays, R1-R4,
and six MRI images, MRI1-MRI6. All images are 512x512
and digitized to 256 gray levels. For SMAR experiments,
the model used was 4x4 NSHP and the block sizes were
chosen as 32x32. The comparative performance of
different schemes was evaluated solely on the basis of the
attainable bit rates, as measured by the first order entropies
of the quantized residuals.

The bit rates attainable using different coding techniques
are summarized in Table 1. The bit rates presented for
HINT and DPCM are same as the first order entropies of
their residual signals, whereas those for SMAR include
both first order entropies of the quantized residuals and the
average number of bits per pixel used for transmitting the
blockwise model coefficients. Finally, Table 2 depicts the
actual compression gains attainable using SMAR as a near-
lossless coder rather than a lossless one.

It is clearly seen that for all the images, both HINT and
SMAR outperform DPCM in terms of attainable
compression gains. This is, of course, according to our
expectation because DPCM uses a much simpler image
model compared to the other two. Whereas such a simple
model works reasonably good for lossless compression [4],
it does not perform as well in the near-lossless case.
Finally, as shown in Table 2, the actual compression gains
attainable by SMAR compare well with the expected ones
discussed in Section 2.
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4. CONCLUSION

A near-lossless compression scheme based on incorporation
of a uniform quantizer into a lossless coder is studied in
this paper. The performance of the scheme is tested on
three lossless coders, namely, DPCM, HINT, and SMAR.
Whercas all the techniques offer significant compression
gaias with very little loss of information, HINT and SMAR
perform supenor compared to DPCM. It is believed that the
proposed method can be wuseful for near-lossless
compression of medical and other kinds of images.
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Figure 1. Support Region of NSHP(4x4) model
"X" is a pixel in the support
"O" is the pixel to be predicted

Ave. bit rates (in Ave. bits rates (in

Images bits/pixel) for max. bits/pixel) for max.
error of £ 1 error of £ 2
HINT DPCM SMAR HINT | DPCM SMAR
R1 1.15 1.40 1.07 0.68 112 0.59
R2 1.19 1.74 1.09 0.75 1.44 0.58
R3 1.17 1.48 1.06 0.66 1.23 0.50
R4 1.28 1.59 1.20 0.76 1.28 0.66

MRI1 2.35 2.37 227 1.88 1.90 1.85

MRI2 1.79 1.76 1.62 1.37 1.38 1.25

MRI3 2.92 3.05 2.76 227 241 2.10

MRI4 2.37 2.53 2.25 1.78 1.95 1.68

MRIS 2.03 2.15 1.91 1.50 1.66 1.40

MRI6 3.57 375 3.43 2.88 3.06 2.72

Table 1. Entropies of different coding schemes

Ave. bit rates (in bits/pixel) using SMAR

Images Lossiess Near- Near-lossless

lossless (max. error

{max. error of £ 2)
of £ 1)

Rl 2.28 1.07 0.59
R2 ) 2.38 1.09 0.58
R3 2.40 1.06 0.50
R4 2.55 1.20 0.66
MRI1 3.33 2.27 1.85
MRI2 2.56 1.62 B 1.25
MRI3 4.26 2.76 2.10
MRI4 3.64 2.25 1.68
MRIS 3.16 1.91 1.40
MRI6 4.99 343 272

Table 2. Compression gains using SMAR
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