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ABSTRACT

We introduce a two-stage bit allocation algorithm analo-
gous to the algorithm for weighted universal vector quan-
tization (WUVQ) [1, 2]. The encoder uses a collection of
possible bit allocations (typically in the form of a collection
of quantization matrices) rather than a single bit allocation
(or single quantization matrix). We describe both an en-
coding algorithm for achieving optimal compression using
a collection of bit allocations and a technique for designing
locally optimal collections of bit allocations. We demon-
strate performance on a JPEG style coder using the mean
squared error (mse) distortion measure. On a sequence of
medical brain scans, the algorithm achieves up to 2.5 dB im-
provement over a single bit allocation system, up to 5 dB
improvement over a WUVQ with first- and second-stage
vector dimensions equal to 16 and 4 respectively, and up
to 12 dB improvement over an entropy constrained vector
quantizer (ECVQ) using 4 dimensional vectors.

1. INTRODUCTION

Typically implemented with the use of quantization matri-
ces, bit allocation is a key step in a wide array of trans-
form codes. Given a sequence of data in the transform
domain (e.g., DCT coefficients), a bit allocation algorithm
determines how to allocate the available rate among the
frequency bands. The optimal bit allocation depends on
the overall statistics of the source. For example, images
containing large amounts of high frequency information re-
quire that more rate be allocated to the high frequency coef-
ficients than do images made up primarily of low frequency
information.

An approach common to a wide array of transform codes
(including the JPEG algorithm) involves breaking an in-
coming data sequence into blocks, performing an indepen-
dent transform on each of those blocks, and then coding the
blocks using a single bit allocation (e.g., a single quantiza-
tion matrix). The performance of this type of scheme can
be greatly improved by replacing the single bit allocation by
a collection of bit allocations. While a single bit allocation
can be designed to do well on average across a particular
data sequence, no single bit allocation strategy can track
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local variation in data statistics. A code that incorporates
a variety of bit allocation options and allows the bit alloca-
tion to change from image to image or even from data block
to data block can better track local source statistics. The
expense of tracking this information is the side information
necessary to describe the chosen bit allocation.

We heré present a technique for designing an optimal
collection of bit allocations for a given source or distribu-
tion. The design algorithm is functionally equivalent to the
WUVQ design strategy [1, 2], which in turn mirrors the gen-
eralized Lloyd algorithm. We call our technique weighted
universal bit allocation (WUBA).

In Section 2 we describe weighted universal bit allo-
cation and the WUBA design algorithm; in Section 3 we
describe a simple transform code, and in Section 4 we use
this code to demonstrate the gain of WUBA over a single
bit allocation system.

2. THE WUBA ALGORITHM

Let 2! = (z1,...,21) € X' represent transformed data (e-g-,
DCT coefficients with I = 64) that are to be represented by
quantizing the ith component to rate b;, 1 =1,...,l. Then
b* represents a bit allocation for the quantization system.
Suppose that we are given some generic scheme for encoding
z' with bit allocation b'. Then associated with any b is a
quantizer C = o o with encoder a : X' — S and decoder
B8:8 — X that together map the input space X' of possible
data vectors to the output space X' of reproductions by way
of a binary prefix code S. Let d(z',d') = d(z', B(a(z")))
be the total distortion achieved by quantizing z' with bit
allocation b' and let r(z',8') = |a(z')| denote the associated
rate. While r(z',b') equals >_b: on average, r(z', ') may
vary with z! in a variable-rate system.

We next consider a collection &%, 8}, . .., bh of bit alloca-
tions. Using the quantization interpretation of a two-stage
weighted universal code [2], we consider this collection to be
a codebook of bit allocations. Thus we define a “first-stage
quantizer” § o & with encoder & : X N — § and decoder
# : & — B that maps the input space of possible data
blocks =V to the output space B of possible bit allocations
b'. We here assume that N is a multiple of I. The first-stage
encoder chooses for each N-block a single bit allocation. We
then use the chosen bit allocation to encode each of the I-
vectorsin z¥. In JPEG, N equals the size of a single image.
For many applications, we may want smaller N to allow the
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bit allocation to change within a single image. The example
of Section 4 uses N = I, which means that we describe a
new bit-allocation for each transform block.

The total distortion associated with encoding data block
zV with bit allocation B(a(z™)) is

NN

d(z", f(a(="))) = Y d(z}, (a(z™))).

=1

The total rate associated with encoding =% includes both
the rate associated with describing a bit allocation and the
rate associated with using the chosen bit allocation. Thus

NJI

r(@™, B(&(z") = 1a(=") + Y r(!, Bla(z™)).

=1

Then, using a Lagrangian in order to minimize the dis-
tortion subject to a constraint on the rate, the optimal first-
stage encoder &* for a given collection of bit allocations B8
is

&* = arg Hﬁg[d(ﬂ»‘”, B(s)) +Ar(z", B(s))]
s€
for every zV. We call the optimal first-stage encoder a
nearest neighbor encoder.

Likewise, the optimal first-stage decoder G* for a given

first-stage encoder & satisfies

N/l
B*(s) = arg min £ [ ;‘ d(X;,8) + ar(Xh oY a(x ) = 3:’

for every s € . We call the process of designing the optimal
first-stage decoder decoding to the centroid. This step may
be accomplished by any number of optimal bit-allocation
design algorithms, one of which is discussed briefly in Sec-
tion 3.

The WUBA design algorithm employs an iterative de-
scent technique to minimize the expected Lagrangian per-
formance. We initialize the algorithm with an arbitrary
prefix code S and collection {3(3) : § € S} of bit alloca-
tions. Each iteration proceeds through three steps which
we enumerate below.

1. Nearest Neighbor Encoding
Optimize the first-stage encoder & for the given first-
stage decoder # and prefix code S.

2. Decoding to the Centroid B
Optimize the first-stage decoder 2 for the newly re-
designed first-stage encoder and the given first-stage
prefix code S.

3. Optimizing the Prefir Code B
Optimize the first-stage prefix code & for the newly
redesigned first-stage encoder & and decoder B. The
optimal prefix code s* for a given first-stage encoder
& and decoder # is the entropy code matched to
the probabilities P{&(X ") = s}, for which the ideal
codelengths are

|s* = —log P{a@(X ™) = s}.

Each step of the algorithm decreases the expected La-
grangian performance. Since the Lagrangian performance
cannot be negative, the algorithm is guaranteed to converge.
The proposed algorithm therefore guarantees a locally op-
timal solution.

3. A SIMPLE DCT-BASED SOURCE CODER.

We here present a simple DCT-based transform code and
the corresponding optimal single bit allocation design strat-
egy that will be used in the next section to test the proposed
weighted universal bit allocation algorithm. The transform
code is similar to JPEG but simpler for our purposes. Given
a two-dimensional array of integer or real input values [zi5]
(typically representing a digital image) we first break the
input data sequence into 8 x8 blocks. Each block will hence-
forth be considered independently. Each data block passes
first through a two-dimensional DCT transform. The en-
coder a : R®* — S maps the resulting 64-dimensional real
data block into a binary string. The encoder accomplishes
this mapping in two steps. The encoder first passes the
data block through a quantization matrix [Qu,+], where the
encoder divides the (u, »)th component Fu,v by the corre-
sponding quantization matrix component Q,,, truncating
to obtain the integer M, , = {Fuw/Quqv|. This trunca-
tion represents the lossy step in the quantization process.
The encoder then losslessly describes the resulting quan-
tized sequence to the decoder using a collection {Su} of
entropy codes. The decoder simply reverses the process,
retrieving [M, ,] from its binary representation, and then
scaling back up to achieve a frequency domain reproduction
[Fu,o], where Fy y = My ,Qu .. We find the spatial domain
reproduction #;; by taking an inverse DCT of [Fu).

In this case, as in JPEG, bit allocation is controlled by
the quantization matrix Qu,v which determines how coarsely
or finely a particular component will be quantized and there-
fore how much rate will be used. The algorithm differs
from the JPEG algorithm in several details, which we now
briefly point out and discuss. First, we remove the differ-
ential encoding of the DC component so that each source
block may be treated independently. Second, we remove
the run-length encoder from the lossless coding step, so that
the quantizer may code each component within a given fre-
quency block independently. We make these modifications
merely for simplicity in the quantization matrix design pro-
cess, which we next describe.

Given the independence imposed by the above modifi-
cations to the JPEG algorithm and assuming an additive
distortion measure in the frequency domain, changing the
(%, v)th component in the quantization matrix affects only
the rate and distortion associated with the (,v)th compo-
nent of the data blocks encoded with the given sequence.
In designing a quantization matrix for a given sequence
of training data, we may therefore consider each quantiza-
tion matrix component independently. We therefore choose
each component @, , to minimize the Lagrangian perfor-
mance over a given training sequence, where larger Q. val-
ues correspond to higher distortions but lower rates. The
optimal entropy code for each component is the entropy
code matched to that component’s statistics. We there-
fore achieve a simple design process for optimizing a bit
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Figure 1: Comparison of SQNR results on 2 collection of 5
MR brain scans. The systems tested include WUBA (pluses
with solid line), a single bit allocator system (pluses with
dashed line); variable-rate WUVQ with first-stage vector
dimension equal to 16 and second-stage vector dimension
equal to 4 (solid line), and ECVQ with vector dimension
equal to 4 (broken line).

allocation system for a particular set of training data. We
note that the resulting quantization table represents a good
starting value from which we can design the quantization
and Huffman tables for the JPEG algorithm. A simple vari-
ation on the entropy-constrained variation of the general-
ized Lloyd algorithm car then be used to iteratively update
the quantization and Huffman tables for the given training
set. We here stick with the earlier described procedure for
simplicity.

4. EXPERIMENTAL RESULTS

In Figure 1, we compare the performance of the WUBA
algorithm to the performance of single bit allocation and
the performances of WUVQ and ECVQ. WUBA contains
64 bit allocations and uses N = ! = 64, WUVQ uses a first-
stage vector dimension of 16. Both WUVQ and ECVQ use
a base vector dimension of 4. Each system was trained
on 20 medical brain scans and then tested on 5 scans out-
side of the training set. All rates are reported in terms
of entropy. WUBA achieves up to 2.5 dB improvement
over single bit allocation systems, up to 5 dB improvement
over WUVQ with first- and second-stage vector dimensions
equal to 16 and 4 respectively, and up to 12 dB improve-
ment over ECVQ. The performance curves for the WUBA
and single bit allocation systems can both be expected to
shift slightly to the left if they use a lossless code more effi-
cient than independent entropy coding, such as the JPEQ
code (run-length followed by Huffman coding) or a zerotree
code. Figure 2 shows a sample image.

Figure 2: The top picture is the original image. The mddle
picture is coded to .45 bpp using a single bit allocation. The
bottom picture is coded to .35 bpp using a collection of 64
bit allocations.
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