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ABSTRACT

An entropy constraint is introduced into a tree cod-
ing halftoner, so that one can control the degree of
compressibility of the bi-level output images. The al-
gorithm essentially trades image quality with compress-
ibility as indicated by rate distortion theory. We demon-
strate that this algorithm can generate halftone images
that are of higher quality than error diffusion, and yet
are also more amenable to compression than error dif-
fused images.

1. INTRODUCTION

The goal of image halftoning is to produce a bi-level
image b, from a continuous tone image &, » so that
both images appear similar when viewed from a dis-
tance. Well known halftoning methods can be classified
into three categories: ordered dithering [1], error diffu-
sion (2, 3], and optimization based techniques [4-8]. In
(8], an optimization based halftoning algorithm using
the concept of tree coding is proposed, that minimizes a
mixture distortion criterion and produces an optimized
halftone output. The tree coding based halftoning al-
gorithm interprets the halftone output as a binary tree,
and is similar to the Viterbi decoding algorithm [9] in
that it looks a predetermined number of steps into the.
future before making a decision for each pixel location.
As a result, the usual disadvantages of greedy opti-
mization can be alleviated, and hence better halftone
images can be produced.

Popular halftoning algorithms in the literature [1-8]
often focus on the tradeoff between complexity and im-
age quality. It is well known that high quality halftones
produced by either error diffusion or optimization tech-
niques are typically not amenable to lossless compres-
sion. To solve this problem, we introduce in this pa-
per an entropy constraint into a recently proposed tree
coding based halftoning algorithm [8], and consider ex-
plicitly the tradeoff between halftone compression and
image quality. This problem is particularly important
for rendering or printing halftones in high resolution
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(> 600 dots per inch) devices, where the communi-
cation time for transmitting halftone images from a
computer to the device is often substantial. In Sec-
tion 2, we briefly review the tree coding halftoner. The
entropy constrained tree coding halftoner is described
in Section 3. Experimental results are also presented.
Section 4 summarizes the results of this paper.

2. TREE CODING HALFTONER

A mixture distortion that uses a combination of fre-
quency weighted mean square error and distances be-
tween minority pixels in a halftone image is proposed
in [8]. Specifically, the distortion has the form

— (v *0)mn)? + YUmn

€mn = (zm,n

where v, n is a low pass filter that approximates the
characteristics of the human visual system, * denotes
convolution, v is a weighting parameter, and up, , is a
distortion measure based on minority dot distances [8].
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(1)
In (1), pm,n is the value of minority pixel at location
(m,n), dp(g) is the principal distance [10] between mi-
nority dots at the gray level g given by
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and dp, » is the actual distance from location (m, n) to
the nearest minority pixel.

The tree coding based halftoning algorithm is then
used in conjunction with this distortion measure to gen-
erate halftones such as the image in Fig. 1. Using a
standard JBIG (lossless) coder [11], one can encode

f0<g<0.5
if0.56<g <1,
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Figure 1: Halftone generated using the tree coding
halftoner with no entropy constraint. The compres-
sion ratio achieved using a JBIG coder is 1.52. The
printing resolution is 150 dpi.

this image to a compression ratio of 1.52. Experimen-
tal results using other images give similar compression
performance. As a reference, Fig. 2 shows a halftone
generated using standard Floyd-Steinberg error diffu-
sion [2], where one can encode to a compression ratio
of 1.89 using a JBIG coder. The image of Fig. 1 is
apparently of higher quality than that of Fig. 2, partic-
ularly in the rendering of details. The error diffusion
version, however, is more amenable to compression. If
we interpret the halftoning procedure as a constrained
output alphabet compression problem, one can explain
this observation using rate distortion theory [12], in
that one can trade distortion with rate.

3. A TREE CODING HALFTONER WITH
ENTROPY CONSTRAINT

Although the tree coding algorithm is capable of gen-
erating high quality halftones, it is desirable to im-
prove on the compression performance for the result-
ing bi-level images. This is not surprising because the
optimization procedure in [8] has been performed to
solely minimize distortion. Note that the tree coding
based halftoner can be viewed as a lossy encoder for the
continuous image, where the output alphabet is con-
strained to be binary. As indicated by Shannon’s rate-

Figure 2: Halftone generated using Floyd-Steinberg er-
ror diffusion. The compression ratio achieved using a
JBIG coder is 1.89. The printing resolution is 150 dpi.
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Figure 3: Template of previous output pixels used as a
context for computing conditional entropy.

distortion theory [12], one can trade distortion for com-
pression performance in any lossy coder. To this end,
one formulates the optimization problem by adding an
entropy constraint to the cost function as

Imn = emn + Amn(Cmn) (2)

where h., »(-) is an entropy measure at pixel location
(m,n), and cm » is a context [13] defined by a window of
neighboring pixels. The parameter A determines the lo-
cation of the resulting halftone on the operational rate-
distortion function, and has an interpretation of the
gradient of the convex hull supporting the operational
rate distortion function.

To ensure good performance at a reasonable com-
plexity, we compose the context using a template of 10
previous output pixels as shown in Fig. 3. As a result,
there are 1024 different possible values for the context.
Since each output pixel is necessary binary, the condi-
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tional entropy is completely determined by

pm,n(ﬁ: Cm,n) = Pr{bm,n = ﬂlcm,n = cm,n}

Similar to what is done in adaptive arithmetic cod-
ing [13], these probabilities are estimated using the
statistics of the past output pixels, and are continu-
ously updated as the halftone image is being generated.
More specifically, we use the estimate

. Nonn(8,7) +1
pm,n(ﬁ,v)=% A=0,1, (3)

where N o(7) is the frequency count of the context
taking on the value ¥ upto the location (m, n), i.e., the
number of times that the context ¥ has occurred; and
Nmna(B,7) is the frequency count of the context ¥ and
output S, i.e., the number of times that the context v
has occurred together with the output value 8. It is
evident that

Nm,n(O;'Y) + Nm,n(la')’) = Nm,n(7)'

The bias values of “1” and “2” in (3) have been inserted
to avoid the situation of division by zero when initially
there is no data. It also has the property that when
there is no data, we have Np, »(0,7) = Nma(l,y) =
0.5, t.e., neither 0 nor 1 is favored in such case.

During the halftoning procedure, we update the
statistics at each pixel location after the decision on
the value of b, , has been made. Instead of (2), we
use at each pixel location the cost function

Jmn = €mn + Al0g(Pmn(bm n, cmn)), (4)
where it is well known that in the long run, the term
log(pm,n(bm,n, €m,n)) on the average approximates the
average length of a codeword required to describe by, ;.
Using (4) and the tree coding algorithm, we can gen-
erate halftones with varying degrees of compressibility
by changing A.

The two images of Figures 4 and 5 are halftones
generated at two different values of A. Using a stan-
dard JBIG encoder, we can achieve a compression ra-
tio of 2.09 for the image of Fig. 4, and 2.35 for that
of Fig. 5. As a reference, halftones generated by error
diffusion can be compressed using the same coder at
compression ratios near 1.9. The image quality of er-
ror diffusion, however, is inferior to the halftone image
of Fig. 4, which is more amenable to compression than
error diffused images. It is evident that as the com-
pression ratio improves, the distortion also increases as
predicted by rate distortion theory [12]. Fig. 6 shows
the plot of mixture distortion versus the average bit
rate required for a JBIG encoder to encode the out-
put generated by the entropy constrained tree coding
halftoner. The curve exhibits the usual form as pre-
dicted by rate distortion theory.

£=0,1.

Figure 4: Halftone generated using the entropy con-
strained tree coding halftoner. The compression ratio
using a JBIG coder is 2.09. The printing resolution is
150 dpi.

Figure 5: Halftone generated using entropy constrained
tree coding halftoner. The compression ratio using a
JBIG coder is 2.35. The printing resolution is 150 dpi.
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Figure 6: Distortion-rate performance of the entropy
constrained tree coding halftoner.

4. DISCUSSION

We have proposed an entropy constrained halftoning
algorithm by introducing an entropy constraint in a
tree coding halftoner. This algorithm enables one to
optimally trade image quality with compression per-
formance, allowing halftones to be transmitted through
rate constrained communication channels.
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