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ABSTRACT

This paper introduces a novel, image-adaptive, encoding
scheme for the baseline JPEG standard [1, 2]. In partic-
ular, coefficient thresholding, JPEG quantization matrix
(Q-matrix) optimization, and adaptive Huffman entropy-
coding are jointly performed to maximize coded still-image
quality within the constraints of the baseline JPEG syntax.
Adaptive JPEG coding has been addressed in earlier works:
in (3], where fast rate-distortion (R-D) optimal coefficient
thresholding was described, and in [4, 5], where R-D opti-
mized Q-matrix selection was performed. By formulating
an algorithm which optimizes these two operations jointly,
we have obtained performance comparable to more com-
plex, “state-of-the-art” coding schemes: for the “Lenna”
image at 1 bpp, our algorithm has achieved a PSNR of 39.6
dB. This result represents a gain of 1.7 dB over JPEG with
customized Huffman entropy coder, and even slightly ex-
ceeds the published performance of Shapiro’s wavelet-based
scheme [6]. Furthermore, with the choice of appropriate
visually-based error metrics, noticeable subjective improve-
ment has been achieved as well.

1. INTRODUCTION

Recent times have seen an explosion in the popularity of
the JPEG coding system [1, 2] due to its viability for di-
verse commercial applications in image compression. This
has motivated the recent study of powerful adaptive coding
schemes which remain faithful to the JPEG syntax [3, 4, 5],
so as to permit the continued use of the baseline JPEG de-
coders that are of great commercial value. This paper is
thus motivated by the practical considerations of abound-
ing applications (like digital image libraries, centralized im-
age storage banks, and image transfer over networks) where
extra encoder complexity is allowable, but the continued
compatibility and simplicity of current JPEG decoders is
essential.

Let us briefly review the baseline JPEG syntax. First,
each color component of the image is partitioned into 8x8
pixel blocks. Each block is then independently transformed
by an 8x8 Discrete-Cosine-Transform (DCT), and quan-
tized with an 8x8 matrix of uniform scalar quantizer step-
sizes, the Q-matrix. The quantized blocks are subsequently
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entropy-coded in raster scan order, with the DC compo-
nent differentially coded from block to block and the AC
components zero run-length coded within each block. For
the AC case, a zig-zag scan is used to order the coefficients,
with a Huffman coding table assigning a codeword to each
nonzero quantized DCT coefficient based on its amplitude
and the number of zeros preceding it in the zig-zag scan. In
the DC case, a Huffman codeword is assigned based on the
difference between the DC coefficient of the current block
and the DC coefficient of the previous block.

The JPEG Q-matrix, whose 64 integer elements range
from 1 to 253, largely determines the quality and compres-
sion of the JPEG-coded image. Although the JPEG syntax
allows the Q-matrix to be customized at the encoder, typ-
ically a scaled version of the “example” JPEG Q-matrix
(which has become the “de facto”) is used, with the scale-
size trading compression for quality. This scaling method
is potentially suboptimal, since image-adaptive, R-D trade-
offs are not fully explored. As an alternative to scaling, R-D
optimized Q-matrix algorithms have been proposed in [4,5].
However, a fundamental restriction of the Q-matrix syntax
is that the Q-matrix cannot be locally adapted. Hence,
although Q-matrix optimization performs well in an “av-
erage” sense, potential gain can be accrued by exploiting
discrepancies between the local and “average” image statis-
tics. This problem has been addressed in [3], where a fast,
R-D optimal coefficient thresholding “kernel” was devel-
oped. The idea of thresholding is that inefficiently coded
coefficients (i.e. coefficients whose contribution to reduc-
ing coding distortion is not worth their cost in bits) may
be thresholded, their bits being allocated to coding “more
worthwhile” coefficients. Although the thresholding kernel
itself is optimal given a fixed Huffman table and Q-matrix,
the potential suboptimality of [3] occurs in Q-matrix selec-
tion, which is done by the scaling method. Logically, R-D
optimal techniques should be applied to jointly choose the
Q-matrix and set of coeflicients to threshold. Furthermore,
since the JPEG syntax provides for customization of the
Huffman coding table, for improved performance this pa-
rameter should also be optimized. These facts motivate the
following joint optimization problem that we will attempt
to solve.

2. PROBLEM STATEMENT
Let c®; represent the image DCT coefficient at block b and

spatial frequency (i,7) of an NxN image. Then, our opti-
mization parameters consist of the following (Figure 1): an
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Figure 1: Optimizing the encoding of an NxN image within
the constraints of the JPEG syntax. The allowable param-
eters, over each block b and DCT spatial frequency (3, j),
are the entries of the 8x8 Q-matrix, Q;;, a set of coefficient
thresholding parameters, T,g, and the Huffman table, H.

8x8 Q-matrix with stepsizes @Q.; that quantize coefficients
at spatial frequency (¢, ), a Huffman codin% table H, and
a set of binary thresholding parameters T°;; that signal
whether to threshold coefficient ¢®;;, i.e.

T = 1 = Transmit c%;
Y71 0 = Zero-out c®;

Let R and D represent the bit rate and coding distortion of
the coded image for a certain set of parameters. Then, for

3 =0,...,T&b=1,..., 2’—;, the optimization problem
becomes
Juin [D(T5, Q)] st R(TS, Qij, H) < Rouagee (1)

iy »ijy
3. PREVIOUS WORK

3.1. Adaptive quantizer selection

R-D optimized Q-matrix selection algorithms have been
presented in [4; 5]. For our discussion, we concentrate on
(4] because it makes no assumptions on the probability dis-
tributions of the DCT coefficients. The scheme of [4] may
be interpreted as minimizing (1) as a function of @;;, with
H constant and T,-‘} = 1,V¥%,3,b. Due to the AC run-length
coding, it is difficult to obtain an optimal solution to this
problem using classical bit allocation techniques. There-
fore, the algorithm in [4] uses a greedy, steepest-descent
optimization, starting with a “coarse” Q-matrix and mak-
ing “finer” one quantizer entry at a time until a desired rate
constraint is met. The location (i,, jo) of the best quantizer
to update (i.e. which of the 64 Q-matrix entries to update)
and what integer stepsize Qi,;, — ¢,1 < ¢ < Q,,;,, to use
are calculated in a greedy fashion. That is, over all possible
AC indices (i,7) and all possible updates Qi; — g, the set
of indices and updates are chosen to maximize %, where
AD is the image-wide improvement in distortion and AR
is the image-wide increase in rate accrued by changing the
quantizer value.

3.2. Optimal Thresholding

A fast thresholding “kernel” has been developed in [3] that
is complementary to quantizer selection. For a fixed Q-

matrix and Huffman table, this kernel finds the optimal set
of AC coefficients to threshold. The key to the algorithm is
using Lagrange multipliers to convert the constrained prob-
lem in (1) to the following unconstrained minimization

min [J(A) = D(T}, Qi;) + A+ R(TY, Qi H)]  (2)
Tfj,q.,»,H

where as before, 1,57 = 0,...,7T& b = 1,...,—16%3. J(A) is
the Lagrangian cost for fixed quality factor A. With appro-
priate choice of A, achieved by iteration, solutions to (2)
provide solutions to {1). The power of Lagrange multipliers
is that, since the AC coefficients are coded independently
from block to block, the problem of minimizing D + AR
for the entire image can be solved by independently mini-
mizing D + AR for individual blocks, with each block-sized
mirnimization quickly solved via a Dynamic Programming-
based algorithm. Intuitively, this Dynamic Programming
algorithm works in recursive fashion, beginning by calcu-
lating the Lagrangian cost of transmitting only the DC for
the block, and then recursively computing the incremental
costs of transmitting the AC coefficients (in zig-zag scan
order), the recursions being performed through fast prun-
ing techniques. Once the kernel finds the best coefficient
to end the scan (hence thresholding all further coefficients),
it “backtracks” to find the optimal set of predecessors to
keep.

Note that in [3], the thresholding kernel is applied at
various scales of the “example” JPEG Q-matrix in order to
find the Q-matrix and set of thresholded coefficients with
lowest Lagrangian cost D+AR. This is equivalent to solving
(1) with a fixed Huffman table and the added constraint
that Q@ = k xQ,, where Q, is the “example” JPEG matrix.

4. QUANTIZER SELECTION VIA LAGRANGE
MULTIPLIERS

In order to integrate quantizer selection with the thresh-
olding kernel, we attack the quantizer selection problem
using Lagrange multipliers. Thus, we seek to minimize (2)
as a function of the Q-matrix entries Q,; for fixed Huff-
man table #. Functional dependency on the thresholding
parameters T,-Z- will be incorporated later, but for now we
will ignore the thresholding parameters (or assume as be-
fore Tf; =1,V1,4,b). Conceptually this is equivalent to the
approach in [4], with a few implementational differences.
Taking an approach similar to [4] we iteratively update
the quantizer entries one at a time under the constraint that
all other quantizers remain constant, choosing the quantizer
update which minimizes D + AR. We select a zig-zag scan
order that covers all AC entries of the Q-matrix, and then
update each Q-matrix entry Qi; — ¢,1 < ¢ < 255, to mini-
mize D+ AR given that all other Q-matrix entries are fixed.
This allows 63 Q-matrix updates per scan iteration, with
the scans being repeated until a local minimum is reached.
A further implementational point is that for a fixed
(10, o) in the scan order, only the relative Lagrangian costs
for each possible update ;,;, — ¢ require calculation, since
all other Q-matrix entries are assumed constant. For exam-
ple, in a given block b, the choice of a single quantizer affects
the coding of at most two coefficients, the current coefficient
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being quantized, cf:h, and the next nonzero coefficient in
the zig-zag scan. The effect on coding the latter is simply
through a change in run-length if the current coefficient is
quantized to zero. This limited dependency allows efficient
techniques for comparing the Lagrangian cost of different
quantizer stepsizes. For example, within a block, the cost
is the same for all stepsizes which quantize the current co-
efficient to zero (i.e. all ¢’s such that ¢ > 2|c?:jo [), implying
computational reduction since DCT blocks of typical im-
ages are sparse.

5. JOINT OPTIMIZATION

Given the constraint of producing a JPEG-decodable bit
stream, one may ask what is the absolute best performance
that can be achieved. Because the space of encoder opti-
mization parameters is finite, once can search for the opti-
mal encoder using integer programming. However, an ex-
haustive search is not only computationally absurd, but
lacking in insight. We therefore assimilate the contribu-
tions of previous work in posing a tractable joint optimiza-
tion algorithm. Recall that the thresholding kernel finds
the best set of DCT coefficients to threshold in order to
minimize the Lagrangian cost, given that the Huffman table
and Q-matriz are fired. Obviously, for joint optimization,
the best possible Q-matrix to use with thresholding should
be tuned to minimize the same Lagrangian cost function.
If this were not the case, then by perturbing the quantiz-
ers one would achieve superior rate-distortion performance.
Moreover, the optimization to tune the quantizers should
be with respect to the coeflicients that are to be transmitted
, rather than the unthresholded DCT proper, requiring a
generalization of the quantizer selection algorithm.

The original quantizer selection takes as input the DCT
coefficients c?j, and finds an optimized Q-matrix, under the
assumption the Huffman table is fixed. In order to optimize
the Q-matrix for quantizing the coefficients to be transmit-
ted, we modify the input to the algorithm. Instead of the
actual coeflicients c?J, the input becomes the set of thresh-
olded coeflicients é?], where é?j = T,-'}c?j. This relation for-
malizes the quantizer selection dependency on the thresh-
olding parameters TZ. Under this interpretation quantizer
selection may be viewed as minimizing the Lagrangian cost
(2) as a function of Qi; for fized thresholding parameters
Tz and Huffman table H.

Note also that customizing the Huffman table according
to the statistics of the currently thresholded, quantized im-
age, not only decreases the current coded bit cost, but also
provides more accurate entropy/rate estimates for future
thresholding and quantization steps. Therefore, the Huff-
man table should be updated to reflect changes in statistics
from thresholding and quantization. The above ideas in-
tuitively motivate the following algorithm, which at each
step decreases the Lagrangian cost. Note that a more com-
plete derivation for the joint optimization algorithm using
concepts from Entropy Constrained Vector Quantization is
provided in (7).

5.1. Algorithm
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Figure 2: Encoder parameter optimization. Starting from
some initial conditions on Q:;, H, and T,-'}, the algorithm
iteratively updates each parameter given that the other pa-
rameters are fixed. The algorithm continues until the net
improvement in Lagrangian cost J is minimal, at which

point the parameters are sent.

1. Initialize Huffman table H, quantizers @, TZ and
convergence factor x(A).

2. Quantizer selection - minimize Lagrangian cost (2) as
a function of Q;, with Tf; and H constant.

3. Threshold - minimize Lagrangian cost (2) as a func-

tion of T?, with Q:; and H constant.
3 3

4. Customize Huffman table H - minimize Lagrangian
cost (2) as a function of H, with Tf; and Q; constant.

5. Return to 2 until convergence criterion is met

(AT(N) < &(N)).

The algorithm guarantees convergence, since the parame-
ter searches are within a finite space and each operation
decreases the Lagrangian cost. Also, to obtain solutions
to the rate-constrained problem (1), a root-solver requiring
minimizations at different A’s may be used to find A such
that the rate constraint is best satisfied. To enhance speed,
a reasonable assumption that has been verified in our ex-
periments is that the Q-matrix is a monotonic function of
A. This allows solutions from previous A’s to tightly bound
the quantizer search for future iterations.

Distortion metric: The preceding algorithm can be
used to optimize a flexible range of distortion metrics. Al-
though for reference we quote results using the the conven-
tional mean-squared error (Lz) metric, this metric'may not
optimize perceived picture quality. For example, in adap-
tive quantizer selection at lower rates, the L2 metric results
in finer coding of less high-frequency information at the cost
of annoying low-frequency blocking artifacts. For best re-
sults, a complex metric on different parameters such as the
display conditions, spatial frequency of the error, and error
masking [8] should be used.

An in-depth discussion of perceptual weightings is be-
yond the scope of this paper. We use a very simple model,
noting from [8] that, at least for a simplistic model, error
in different frequencies should be normalized by dividing by
the perceptibility of the error in those frequencies. Because
the “example” Q-matrix provides an estimate of percepti-
bility thresholds (though this perceptibility varies depend-
ing on viewing conditions), one may use it to weight the
errors in different frequencies. The low bit rate example we
present will incorporate these weightings, with a decrease
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in the normalizing factor for the four lowest frequency co-
efficients by two, to reflect the perceptibility of “blocking”
artifacts.

6. RESULTS

The following tables reflect the PSNR improvements due to
thresholding, adaptive quantization, and joint optimization,
with a customized Huffman table being used for all cases.

JPEG coding of 512x512 Lenna PSNR (dB)
Rate | Custom | Adaptive | Adaptive | Joint
{bpp) | Baseline Quant. Thresh Opt.

.25 31.6 31.9 32.1 32.3

.5 34.9 35.5 35.3 35.9

.75 36.6 37.5 37.2 38.1
1.0 37.9 38.8 38.4 39.6
JPEG coding of 512x512 Barbara PSNR (dB)
Rate | Custom | Adaptive | Adaptive | Joint
(bpp) | Baseline Quant. Thresh Opt.
.25 25.2 26.0 25.9 26.7
.50 28.3 30.1 29.3 30.6
.75 31.0 33.0 31.9 33.6
1.00 33.1 35.2 34.1 35.9

Figure 3: JPEG w/ custom Huffman table (0.23 bpp)

Two major factors explain why the PSNR coding gains
of adaptive quantizer selection and thresholding are nearly
additive. First, their operations are nearly orthogonal, since
adaptive quantizer selection exploits global image statistics,
while thresholding exploits local statistics. Furthermore, as
noted in [4], adaptive quantizer selection results in finer
quantization of high frequency DCT coefficients than in
baseline JPEG [4]. Although optimal on a global scale,
this operation may do poorly on a local scale, since cer-
tain higher frequency coefficients become extremely costly
to run-length encode depending upon the statistics of their
block. Thresholding exploits these local statistics by remov-
ing these coefficients to help provide the substantial overall
PSNR gain.

Figure 4: R-D optimized JPEG (0.23 bpp)

We present a subjective example of the “Lenna” image
coded at .23 (bpp) using standard JPEG with customized
Huffman table (Figure 2) and using our adaptive coder with
a weighted error criterion (Figure 3). Retaining full JPEG
compatibility, the adapted version has significantly reduced
blockiness, since quantizer selection favors the DC compo-
nent more than “scaling” and thresholding of certain costly
(in_an R-D sense) high-frequency information allows finer
coding of low-frequency information.
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