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ABSTRACT

In this paper, we propose a novel approach for low bit rate
perceptually transparent image compression. It exploits
both frequency and spatial visual masking effects and uses
a combination of Fourier and wavelet transforms to encode
different bands. Frequency domain masking is computed by
using a fine to coarse analysis step. Spatial domain masking
is computed either by using Girod’s model or a coarse to
fine analysis step that accurately computes local contrast.
A discrete cosine transform is used in conjunction with fre-
quency domain masking to encode the low frequency bands.
The medium and high frequency bands are encoded using
spatial domain masking and a wavelet transform. The en-
coding of these bands is based on a recursive selection of the
important edges in each band. It uses cross-band prediction
to minimize bit rate. Experiments show the approach can
achieve very high quality to nearly transparent compression
at bit rates of 0.2 to 0.4 bits/pixel.

1. INTRODUCTION

Image compression with little or no visual distortion is de-
sirable in many applications. It is of considerable impor-
tance in these applications to reduce the bitrate as much
as possible. To achieve this goal, a coding scheme should
exploit both redundancy and irrelevance in an image. Un-
fortunately most coding schemes proposed in the literature
exploit only redundancy in an image, due to the complexity
and limited knowledge of the human visual system. We be-
lieve the application of visual masking effects in the coding
design process is critical to achieve a high level of perfor-
mance. Recently Safranek et al proposed an empirical vi-
sual metric to remove irrelevance in images [1]. We propose
here a direct application of both spatial and frequency vi-
sual masking effects in coding design. The masking models
come directly from psychophysical data and have been val-
idated experimentally. The wavelet transform is used here
due to its similarity to the tuning mechanism in the hu-
man visual system[2] and to its close approximation to the
Karhunen-Loeve transform(7).

Our technique is based on the observation that low fre-
quency images fit the set-up of the experiments that re-
searchers have used to determine frequency domain mask-
ing effects. The images that correspond to medium and
high frequency bands are edge images. Therefore, masking
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in these bands is dominated by spatial domain masking. We
use a fine-to-coarse analysis step to determine segments of
the image over which particular frequency domain masking
thresholds hold. A coarse-to-fine analysis combined with
the results of [4], [5] or the model of [3] is used to deter-
mine spatial masking thresholds. To match the two visual
masking models, two representations are employed to en-
code the subimages. Subimages of medium and high fre-
quencies are encoded in the spatial domain representation
using a wavelet representation. Subimages corresponding
to low frequencies are encoded in the frequency domain by
applying a discrete cosine transform (DCT). Scalar quan-
tization of all transform coefficients is used and designed
such that the quantization error at each pixel does not ex-
ceed a pixel dependent tolerable error level. It is followed
by entropy coding.

2. THE WAVELET TRANSFORM

The wavelet transform provides a compact multiresolution
representation of the image. The wavelet transform used in
this paper is a tensor product of two identical one-dimensional
wavelet filters. The mean of an image is first calculated and
removed from the image; then the wavelet transform is used
to build a multiresolution representation of the image. The
number of decomposition levels is generally of 5 to 6 for
images of size 512 by 512. The mean is quantized with 10
bits and passed to the decoder as side information.

Short wavelet filters with large vanishing moments are
used for the decomposition. We avoided long wavelet filters
to have a better control on the spatial spread of coding
and quantization errors. The particular wavelet filters that
we have used are based on those of [8]. With these filters,
the low-pass subimage is close to a down-sampled version
of the original image. This is desirable when we calculate
tolerable error level for each pixel (see Sect 3, as well as for
the cross-band prediction (see Sect. 5).

3. VISUAL MASKING MODELS

We use a two step procedure to calculate the tolerable error
level (TEL) at each pixel of each subimage. The first step
is based or Girod’s vision model [3]. This model accurately
predicts the masking effects around luminance edges as well
as masking by uniform background. It can be directly used
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in the design of coding systems. After quantization, the
model is applied to check if distortions in the quantized
image are visible. If any are not acceptable, we re-perform
the quantization step. The procedure is then repeated until
no distortion is visible. This process is time-consuming. We
therefore modify the model so that the tolerable error level
can be found for each pixel of each input subimage directly.

To find TEL for each pixel of the original image, we use
the linearized model of [3] under the assumption that all
errors in the coded image are small. This is a reasonable
assumption for nearly transparent image coding. Given the
thresholds computed by the model at each pixel, we conser-
vatively calculate the TEL at each pixel of the coded image
by neglecting the optical blur implicit in the formation of a
retinal image and by using the simplified w-model of [3]. To
find the tolerable error level for wavelet decomposed subim-
ages, we can either use the same method as we used above
to find the TEL for the original image, or simply use Gaus-
sian filters to process the TEL of the original image, with a
spatial spread comparable to the wavelet filter’s and coeffi-
cients scaled to the visual contrast sensitivity at the central
frequency of that subimage. The second method is chosen in
this paper since the coding gain predicted by Girod’s model
is small (see below). The parameters in Girod’s model are
adjusted to match our actual testing environment.

Note that it is also possible to replace the model of [3]
by the spatial domain masking effects predicted by local
contrast studies [4], [5]. In this case, we use a coarse-to-fine
step that starts with the low frequency subimages and pro-
ceeds to higher frequency images to estimate spatial domain
masking in the various medium and high frequency bands.

Girod’s model predicts very small coding gain, typically
around 0.5 bits per pixel [3]. This has lead us to supple-
ment the masking results predicted by this model with those
predicted by experiments based on sinusoidal patterns (fre-
quency domain masking) [6]. We use the outputs of the
medium and high pass filters in a filter bank decomposition
of the image to segment the image into regions over which
one can safely apply frequency domain masking based on
the results of [6].

4. CODING OF SUBIMAGES

Given the TEL that can be tolerated at each pixel, we pro-
ceed to encode the subimages corresponding to the different
frequency bands. Recall that these subimages are obtained
using a wavelet decomposition based on the wavelets of [8].
Masking in the low frequency images is mostly a fre-
quency domain effect. Therefore, we could encode these
images using the same techniques used in [7). To reduce the
complexity, we instead transform subimages of low frequen-
cies into the frequency domain by using the DCT. Next,
we use frequency domain masking to determine the TEL
in each frequency bin. This then determines the amount of
quantization of each frequency coefficient. This information
is encoded using a vector quantization approach and sent
as side information. This works since the subimages of low
frequencies have good resolution in the frequency domain.
In order to encode the medium and high frequency bands
(the LH, HL and HH images) at different scales, we proceed
to select recursively the important edges in each subimage.

We use a modification of the technique described in [11] for
extracting the important extrema of the high frequency sub
images. The proposed method is iterative, and can retain as
many of the extrema as required. The selection of the im-
portant edges and the amount of error that can be tolerated
in their representation are both based on the TEL informa-
tion extracted during the computation of spatial masking in
the different bands. To reduce the amount of information
transmitted, we exploit the fact that the impulse responses
of the wavelet analysis filters are known and that the edges
in the various bands are due to discontinuities in the inten-
sity of the image or some of its higher derivatives. At any
iteration, we localize the position of the important edges
in the highest scale LH, HL and HH subimages. We en-
code these edge contours using the technique described in
the next section for transmitting outlines of regions with
similar TEL levels. Next, we predict the position and mag-
nitude of the important edges in lower scale images. Note
that the decoder can also implement this operation once it
has decoded the highest scale subimages. Finally, we de-
termine if we need to also encode the deviations from these
predicted values.

5. THE QUANTIZATION STAGE

Several methods for quantization have been investigated
and are still under investigation. They are all designed in
such a way that at any pixel of any subimage, the quanti-
zation error does not exceed that of the tolerable error level
found by masking models for that pixel. A simple way is to
use uniform quantization for the subimages. First, set all
the values smaller than their TEL to 0. Next, select a quan-
tization step that is twice the value of the smallest TEL of
the remaining pixels in that subimage. That ensures that
no quantization error is larger than the corresponding TEL.
The quantization step of each subimage is represented in a
floating point format with 10 bits devoted for mantissa and
2 bits for the exponent. It is sent to the decoder as side
information. The optimum dividing point between spatial
and frequency domain representations of subimages is found
experimentally.

While this method is simple, it does not exploit the
large variation in the tolerable error level due to its uni-
form quantization. This can be avoided if we use adaptive
quantization. This is not straight forward since the decoder
does not know the tolerable error level at each point. We
first segment the TEL image into several regions. Within
each region pixels have similar tolerable error level. Each
region is uniformly quantized. The quantization step for
each region is passed to the decoder. The contours of the
regions are either coded by contour coding in [9] or by run
length coding, and are sent to the decoder as side informa-
tion. For run length coding of the contours, we use two end
points to represent the contour points in the line connecting
the two end points. Since coding of the contours is expen-
sive, we do this for the subimage at the second or third
level. For subimages at other scales, the contours are ei-
ther down-sampled or up-sampled and then extended to be
continuous in the sense of 8-connectivity neighborhood, de-
pending on the subimage sizes. The subimages in frequency
domain representation do not use this segmentation since

2328



the DCT requires rectangular shaped images, and this re-
quirement would offset any saving by doing segmentation,
due to the small subimage sizes. A method to do the above
segmentation from the subimage of lowest frequency with
gradually refined as subimages of high frequencies are con-
sidered is currently under investigation. This will save us
from coding the contours which is expensive.

6. ENTROPY CODING

After quantization, the two-dimensional array of coefficients
is organized into a one-dimensional array. subimages that
correspond to a spatial domain representation:are scanned
as follows. Each LH is scanned horizontally: even numbered
rows are scanned from left to right and odd numbered rows
are scanned from right to left. Each HL is scanned vertically
in a similar manner. For the HH subimages and subimages
in frequency domain representation, a zigzag scan same as
that in JPEG is used.

The one-dimensional array integers are then translated
into symbols. There are two ways to do so. The first way is
to use run length to code number of zeros. The run-length
zeros are coded by a zero mark followed by an integer which
is the number of run-length zeros. Each integer is coded
with two symbols, the first is the size of the integer, the
second is the code of the integer which is similar to that
used in JPEG[10]. .

For subimages of low frequency and those quantized in
the frequency domain, we use similar method as the JPEG
to form symbols.

The symbols are coded with Huffman coding, which pro-
vides further compression.

7. EXPERIMENTAL RESULTS

We have tested the performance of the proposed coding
scheme on a SUN sparc 2 workstation. Fig. 1 shows part
of the original 512 x 512 Lena. This part is more critical
for perceptual quality than other parts. Fig. 2 and Fig. 3
show the corresponding part of the decompressed images
with coding rates of 0.38 bits/pixel and 0.25 bits/pixel, re-
spectively. The image was decomposed using six levels. All
subimages except the low frequency one were quantized in
the spatial domain. The LL subimage was coded in the fre-
quency domain. The TEL image was divided into 8 regions
and the contour of the regions were coded by run length
coding. The run length coding is not as efficient as the
edge coding method proposed by Kunt et al. [9], and a
better segmentation and contour coding are still currently
under investigation. While we have not tried hard to op-
timize any parameter, Fig 2 is nearly transparent to the
eye when looked at from any distance. Fig 3 shows some
perceptual distortion when looked at closely, mostly around
the shoulder. This is understandable since visual masking
around the shoulder is smallest.

8. CONCLUSIONS

We have presented an image compression method to exploit
irrelevance in an image by applying spatial and frequency

Figure 1: The original image.

masking effects directly in the design of coding and quanti-
zation. Both spatial and frequency domain representations
are used to represent the wavelet-decomposed subimages,
in conjunction with the two visual masking models. The
method achieves low bitrate image compression with nearly
transparent quality.
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Figure 2: The decoded images with 0.38 bits/pixel.
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