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ABSTRACT

Phase aberration due to tissues with inhomogeneous
acoustic speeds is a major source for image degradation in
medical ultrasound. In most phased array pulse-echo ultra-
sound systems, the delay used to steer and focus the beams
are calculated assuming constant speed. In practice, how-
ever, the acoustic speed varies for different types of tissue.
In this paper, we present a method to estimate the phase
errors between the elements of a linear array, based on sig-
nal representation in the spatial-temporal Fourier domain.
Compared to the standard cross-correlation methods used
for time delay estimation, the proposed technique shows
better performance.

1. INTRODUCTION

The correction of phase errors due to propagation in inho-
mogeneous media has been the focus of a lot of research in
medical ultrasound. These phase errors affect the quality
of the images. In particular, the point spread function is
broadened which lowers the resolution and blurs the image.
In coherent imaging systems using linear arrays, beamform-
ing is used to generate a single line (an A-line) in the image
from each two-dimensional snapshot (the two dimensions
being time and distance along the array axis). The first
step in the beamforming procedure consists of aligning the
radio frequency (rf) signals received by the elements of the
array, by compensating for the geometric delays. The en-
velope of the linear summation of the geometrically aligned
signals is logarithmically compressed to give an A-line. A
constant speed of 1540 m/s is usually assumed when cal-
culating the geometric delays used to steer the ultrasound
beam during transmission and to focus during the reception.
It has been shown that the acoustic speed ranges from 1430
m/s in fat up to 1665 m/s for collagen [1]. As a result, the
signals at the different array elements are not aligned after
the geometric delay compensation.

Several methods have been proposed to solve this prob-
lem. In [2], O’Donnell et al proposed an iterative method to
measure the time delay, by calculating the cross-correlation
between the signals received by adjacent array elements. A
computationally efficient version of this method was pro-
posed in [3], in which the delays are estimated by mini-
mizing the sum of absolute differences for pairs of adjacent
elements. Trahey et al. [4], [5] also suggested a method
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that would adaptively maximize the speckle brightness by
adding or subtracting small amounts of delays in each it-
eration. A frequency domain method for narrowband sig-
nals was presented in [6], which requires the complete two-
dimensional scan to be acquired before estimating the time
delay profile and also involves matrix inversions. These
methods are generally too slow to be implemented in real

“time. Due to the limited success of these methods, ultra-

sound imaging systems used in practice have yet to imple-
ment any phase aberration correction algorithm.

In this paper, we present a different approach to the
phase aberration problem, based on signal representation
in spatial-temporal frequency domain. The phase errors
are estimated from the two-dimensional spectrum and used
to align the received signals. The main computational load
for the proposed method is the calculation of Fast Fourier
Transforms (FFT) of the received signals, which can be
implemented in hardware.

2. PROBLEM FORMULATION

The geometric delay compensation can be seen as mapping
the received circular wavefronts into plane waves orthogonal
to the array axis. Figure 1-(a) and 1-(b) show a wideband
pulse with and without phase aberration. The correspond-
ing signals after geometric delay compensation are shown
in Figure 1-(c) and 1-(d). It is to be noted that, signals ar-
riving at different times are echos from different depths in
the tissue. Therefore the phase delay profile changes with
time (depth) and the signals are jointly non-stationary pro-
cesses. Therefore, the signals from two adjacent elements
in the array are windowed such that within the window, the
signals can be considered jointly wide-sense stationary and
the relative time delay is constant.

Let z;(t) and z;_1(t) be the windowed signals received
by two adjacent elements in the array after correcting for
the geometric delays. Assuming the phase aberration causes
one of the signals to be a delayed version of the other, then
we can write,

z;(t) = zic1(t — 1) + na(t), (1)

where 7; is the delay between the two signals, and n;(t)
is the additive white Gaussian noise. The problem is to
estimate the delay 7; for 1 = 2,..., M, where M is the
number of elements in the array.
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Figure 1: (a) A wideband pulse reflected from a point
source, the horizontal axis is time (depth) and the verti-
cal is the distance along the array, (b) same as (a) but in
the presence of phase aberration. The corresponding sig-
nals after compensating for the geometric delays are shown
in (c) and (d).

3. DELAY ESTIMATION

If we assume that the delay is changing linearly with the
distance between the two elements, the signals arriving at
the array can be seen as resulting from a plane wave with
an angle of arrival §; from the array normal. The phase
delay between the two elements is given by,

Dsin 9,’

2rfri=2nf -

()

or Dsind

sin ¢
P (3)
where v is the speed of propagation of the acoustic wave
in the medium. The same delay can be written as a func-
tion of the spatial frequency along the array axis as vD.
Therefore, the relationship between the spatial and tempo-
ral frequencies is [8],

sin 9,‘
P

v=f (4)
In order to estimate the delay 7, using Eqn. 3, the first step
is to calculate sin§; from Eqn. 4. Let z(m,t) be a spatial-
temporal two-dimensional variable of the signals received
by the array, m being a discrete variable denoting the dis-
tance along the array (the position of elements). The two-
dimensional frequency domain representation of z{m,t) for
m =+t~— 1,1 is given by,

Xioa,:(f, k) = /Z z(m,t)e_jz"km/ZKe'jz"ﬂdt
t

m=i—1

-K<k<K, (5)

where f is the temporal frequency, k is the discrete spatial
frequency variable, and 2K is the number of points in the
spatial Fourier transform. Omitting the subscripts ,i — 1
for convenience, we can write,
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where X;(f) and N;(f) are the Fourier transforms of z;(t)
and n;(t) respectively. The temporal spectrum is concen-
trated around the center frequency f. and usually has a
peak around f.. Therefore, the peak value in the two-
dimensional Fourier space lies on the line, representing a
signal arriving at an angle 4, at or around f..

We will now show that the location of the maximum
value in the 2D spectrum is an estimate of the time delay
7; between the two signals. To find this maximum, we first
select the one dimensional spatial spectrum X{f, k) corre-
sponding to a temporal frequency f; such that f. — BW/2 <
fi £ fe+BW/2, where BW is the bandwidth of the signals.
In the following derivation, the noise term will be dropped,
since it is a white Gaussian process with a flat spectrum
which does not affect the peak location:

X (£ k) = 4 1X(FF costln(fims ~ 52 (1)

Then we set the derivative of | X (fi, k)| with respect to &
to zero,

2
dIX(;’:k)I - 4?” IX:(fO sinfon(fir — %)] =0. (8)

Since | X;(f1)| # 0, then

sin[2x (fi; — 2—1;2)] =0 (9)

or

2 (firi — i) = nm, n=0,4+£1,4+2,... (10)

2K
Therefore

T,_L( +_’f_)
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which is periodic, with period 1/2f;. This is a direct result
of assuming periodicity when applying the discrete Fourier
Transform. Fortunately, in medical ultrasound applications,
the delay between adjacent array elements is usually a small
fraction of a period of the pulse. Hence, the time delay is
simply given by,

-K<k<K. (11)

k

T = 2]‘_7 (12)
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Figure 2: The phase error profiles; solid line is the true
phase error, the line with o’ is the estimates of the fre-
quency method, and the line with ’x’ is estimated profile
using cross-correlation.

To implement this method, the received signals are first
windowed and digitized. The 2D FFT is then calculated
for each pair of adjacent elements. The search for the peak
value at the component corresponding to f; is then per-
formed. The frequency f; is selected as that at which the
peak of | X;(f)| occurs. This obviously depends on the char-
acteristics of the transmitted pulse. However, due to wave-
front distortion and attenuation as it propagates through
tissue, or due to colored non-Gaussian noise, the peak of
the 2D spectrum may deviate from its assumed value. In
this case, repeating the procedure for different values of f;
in search for the peak provides more accurate results.

This method is equivalent, in concept, to a bandpass
filtering operation followed by a periodogram estimator for
signals received by each pair of elements. The bandpass
filtering action is done by the selection of one or more com-
ponents of the temporal Fourier transform. The search for
the peak in the spatial Fourier domain is equivalent to ap-
plying periodogram.

4. SIMULATIONS AND EXPERIMENTAL
RESULTS

Simulations were performed to compare the performance of
the proposed method with the conventional cross-correlation
method for time delay estimation. A wideband pulse with
center frequency 2.75 MHz and a 50 % relative bandwidth
was used. The array consisted of 64 elements with an inter-
element distance of 0.279 mm. The sampling frequency
was 48 MHz. The scatterer distribution was assumed to be
Gaussian. The phase aberration was simulated by delaying
the signals received with a delay profile consisting of three
components; sinusoidal, linear, and random. Additive zero
mean Gaussian measurement noise was also added to the
wideband signals. The data were windowed using a sliding
Hamming window. The window size corresponding to a dis-
tance of 5 mm in depth. The 2D FFT consisted of 64 points
in the spatial direction and 256 points in the temporal di-
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Figure 3: The rms error of the estimates of the frequency
method and the cross correlation method as a function of
the distance along the array.

rection. The results in Fig. 2 show that both the frequency
method and cross-correlation estimates are very close to the
actual phase error profile, when the rate of change of the
phase profile is relatively low. When the rate of change in-
creases, the frequency method is a more accurate estimate.
Figure 3 shows the rms error calculated for 50 independent
realizations of the phase profile of Fig. 2.

The experimental set-up was similar to that used in the
simulations except that the number of elements was 48. The
received rf signals were per channel data recorded from an

ATL-Ultramark®8 scanner. In Fig 4-(a) and 4-(d) real ul-
trasound rf data from a female breast and the corresponding
A-line (obtain by envelope detection of the coherent sum-
mation of the rf data) are shown. The corrected rf data
and the resulting A-line after correction using the proposed
method are shown in Fig. 4-(b) and 4-(e). Finally the
results after correction using cross correlation are seen in
Fig. 4-(c) and 4-(f). Figure 5 shows a partial image of a
human abdomen before (Fig. 5-(a)), and after correction
(Fig. 5-(b)); improvements in resolution and contrast can
be clearly observed.

5. CONCLUSION

A phase aberration correction method 1s proposed for ultra-
sound imaging systems. The method has the advantages of
being simple to implement and providing reliable estimates
for the phase errors resulting from tissue inhomogeneities.
Compared to the cross-correlation method used for time
delay estimation, the proposed method is less sensitive to
noise and sudden variations in the phase error profiles.
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Figure 4: A comparison of real ultrasound rf data and A-lines obtained without correction (a) and (d), after correction using
proposed method (b) and (e), and after correction using cross-correlation (c) and (f).
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(a)

Figure 5: Partial image of a human abdomen (a) before
correction and (b) after correction.
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