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ABSTRACT

We combine several ideas, including nonruniform sampling
and circular harmonic expansions, into a new procedure for
reconstructing a small region of interest (ROI) of an image
from a set of its projections that are densely sampled in the
ROI and coarsely sampled outside the ROL. Specifically, the
radial sampling density of both the projections and the re-
constructed image decreases exponentially with increasing
distance from the ROI. The problem and data are reminis-
cent of the recently-formulated local tomography problem;
however, our algorithm reconstructs the ROI of the image
itself, not the filtered version of it obtained using local to-
mography. The new algorithm has the added advantages of
speed (it can be implemented entirely using the FFT) and
parallelizability (each image harmonic is independent).

1. INTRODUCTION

The problem of image reconstruction from a complete set of
projections is to compute an image u(z,y) from its Radon
transform, i.e., from a complete set of its line integrals
p(r, ), defined as

p(r,0) = /°° /°° u(z,y)8(r — zcosd — ysin f)dzdy. (1)

The most common procedure for reconstruction from a com-
plete set of projections is filtered backprojection (FBP). In
FBP the projections p(r,d) are first filtered with a filter
h(r) whose Fourier transform A(w) = [w| up to some cutoff
frequency, and is windowed to zero for higher frequencies.
These filtered projections are then backprojected. When
the projections are sampled in the angular and radial vari-
ables, but cover the entire extent of the image, FBP still
yields quite satisfactory results. The resolution of the re-
constructed image is determined by the sampling densities
in 7 and 8 of p(r,8) and the cutoff frequency of h(w).

In many applications, it is not possible to obtain a com-
plete set of projections which are sampléd densely enough
to attain the desired resolution over the entire support of
p(z,¥) [1]. For example, X-ray dose limitations, or time
constraints when imaging a moving object, may preclude
such a large number of projections. If the entire support of
u(z,y) is covered, but projections are not sampled densely
enough, then the desired resolution is not attained. If the
projections are dense enough around some region of inter-
est (ROI) of u(z,y), but do not cover the entire support of
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u(z,y), then a good reconstruction using FBP is not possi-
ble, due to the infinite support of the filter A(r) [1] (ideally
h(r) is a derivative-Hilbert transform Hd/dr).

An example of image reconstruction from incomplete
data is local tomography [2], in which the filter k(r) no
longer approximates Hd/dr. The local filter h(r) = d*/dr*+
ad(r) is used, and the Fourier transform /i(w:, w2) of the re-
constructed image fi(z,y) is related to the Fourier transform
B(wr, w3) of p(z, ) by i(wr, wa) = \/w] + whA(ws, ws) +
aj(wr, wz)/\/w? + w3. The idea is that since this A(r) is
local, only projections passing through the ROI are used;
no other projections need be taken. However, it is clear that
#(z,y) # w(z,y); for example, constant regions of u(z,y)
tend to become cup-shaped functions ji(z,y) [2]. Further-
more, local tomography is even more susceptible to noise
than FBP, due to the extra noise-amplifying /w? + w2

In this paper, we introduce a different type of region-
of-interest tomography, based on exponential radial sam-
pling of the image and projections. We assume that we
are interested in obtaining high resolution only in a small
ROI; outside this region, high resolution is not very im-
portant. Without loss of generality, we assume that the
ROl is centered on the origin (this can easily be achieved
by translating p(z,y)). The angular sampling is conven-
tional equiangular sampling, i.e., p(r, 8) is sampled in 4 at
angles 8, = %"n, n=0,1,...,N — 1. However, the radial
sampling in r in p(r,8) and p in p(z,y) = s(p,¢) (polar
coordinates) is exponential, i.e., p(r,d) is sampled in r at
distances ri = rye(* 14 k> 1.

This means that the samples are very dense around the
origin (i.e., in the ROI), and the sampling density decreases
exponentially with increasing distance from the origin. This
gives us good resolution around the origin (in the ROI),
and poor resolution far away from the origin (which is irrel-
evant). These remarks apply both to the data (the projec-
tions p(r, 8)) and the reconstructed image u(p, ¢). Although
the exponential decrease of sampling density with increas-
ing r is not as sharp as the abrupt drop of sampling density
to zero in local tomography or the interior problem, it is
quite steep, regardless of the value of A, and it is clearly
in the spirit of localizing the projection data in a ROI It
shares the advantages of local tomography (viz., using less
data, with attendant smaller X-ray exposure). And it has
a significant advantage over local tomography: u(z,y), not
ii(z,y), is computed in the ROL

Exponential nonuniform sampling calls to mind the wavelet
transform, which has been used recently [3] to obtain a dif-
ferent type of reconstruction algorithm using nonuniform
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sampling. It is interesting to compare our numerical results
to those of [3], although the approaches and data required
are quite different. For example, our approach is exact to
discretization, the error due to which can be made arbi-
trarily small, while the approach of {3] requires wavelet ba-
sis functions with compact support both before and after a
derivative-Hilbert transform, which clearly cannot be found
(although functions with rapidly decaying support can be
{ound). Our approach is related to the wavelet transform,
but in a completely different way from [3]-it generalizes to
a convolution in scale (see [4]).

For image reconstruction using exponential radial sam-
pling, we use the circular harmonic decomposition, which is
a Fourier expansion in the angular variable 4 or ¢. This de-
compositlon has been applied to reconstruction from projec-
tions in [5]. However, [5] used either continuous variables or
uniform sampling, while we use exponential radial sampling.
This creates two advantages: (1) it results in a region-of-
interest tomography problem, as described above; and (2)
the reconstruction formula can be written as a regular con-
volution for each harmonic. Since the fast Fourier transform
(FFT) can be used to implement these convolutions, all in
parallel, this results in a reconstruction algorithm that is
an order of magnitude faster than FBP.

2. CIRCULAR HARMONIC IMAGE
RECONSTRUCTION

Let u(p, ) denote the image in polar coordinates. Since
both the image and its projection p(r,§) are periodic in the
angular variable with period 2x, they can be expanded in
Fourier series (circular harmonic decompositions [5])

wpd)= D wal(e)e™ p(r,0)= ) pa(r)e’™,
n—o0 n=-—oo (2)
where .

2r 2 )
I‘n(/’)=% / u(p, )" dg; pa(r) = % /o p(r,0)e™ " dg
0o

3)
arc the circular harmonics of u(p, ¢) and p(r, 8).

Circular harmonics of the image can be reconstructed
from circular harmonics of the projections, independently
for each n [5]. In this paper we use the “noncausal, stable”
form of circular harmonic reconstruction [5]:

ﬂ)——[/ U..-l() / (-Mm-lwp))} pa(r)dr,

(4)
where Un(z) = sin((n+1) cos™ z)/sin(cos™" z) is the Cheby-
shev polynomial of the second kind of order n. Note that (4)
is DIFFERENT from the original “causal, unstable® Cor-
mack formula, whose integrand was unbounded for large n.
In (4) the integrand is bounded as n — oo. {4) has been
used [5] to perform fairly accurate reconstructions from reg-
ularly sampled projections.

3. DERIVATION OF THE ALGORITHM

3.1. Problem Specification

The problem that we solve in this section is defined as
follows. Given samples of the projections of an image,
where the sampling density is exponential in the radial vari-
able and equiangular in the angular variable, compute the
image on the same grid. That is, given {p(rx,fn),rx =
re* V8 k = 1 . K0, = 27"'11,15 =0,1,...,N -1},
compute {u(px, $n)} for analogous values of px and ¢,. For
convenience we define rg = pp = 0.

We assume that: (1) the image (and hence the pro-
jections also) is known to have its support inside a disk of
radius R; and (2) the image (and hence the projections also)
is known to have only N circular harmonics un(p) signifi-
cantly different from zero. r; = p; is the smallest radius of
interest, and rx = px = R, so that (K — 1)A =In(R/r1).
Note that the grid is very dense around r1, and much sparser
around rg, dropping off exponentially with increasing ra-
dius, regardless of the size of A.

3.2. Discretization

We first discuss how to obtain the harmonics un(p) of the
image from the harmonics p,.(r) of the projections. Since
B-n(p) = pn(p), we require image harmonics only forn > 0.
Changing variables from r to z = cos™!(r/p) in the first
integral of (4) and z = cosh™!(r/p) in the second integral
of (4), and substituting p = p;, (4) can be written as [5]

1 x/2
Ba(p;) = -;/ sin(nz)p,,(p; cosz)dz
o .
1 °‘h—l(R/PJ’)
- —f e~ " pi.(p; cosh z)dz
* Jo
1 z=m/2
’
= — Pn(p; cos z)d(cos nz)
™ z=0 "
1 z=cosh~}(R/p;)
+ = Pn(pj cosh z)d(e™"*)5)

z=0

We now generalize the result of [5]. Instead of choosing
fixed discretization points {z;x} to approximate (5) as in
[5], we let {z;x}f_ o be any real numbers such that

0=1;; <%j;-1<...<Tj0=7/2

0 =1z, < Zjj41 < ... < zj,k = cosh™ (R/p;). (6)

Then, following an argument analogous to the argument in
[5], it is easily shown that a first approximation to (5) is

j=1

1

un(ps) = == ani(k)(cos(nzjkss) = cos(nz;x))

k=0

1 K-1

- i -NTi k41 _ o~ N5k [

+ 7rnkz:a,,(k)(e g e~k (1)

=J

where a, j (k), which approximates p}, (p; cos z) or p,(p; cosh z),
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is defined as

Pnlpj COST;k41) — pn(ps cOSZ;,k)

, 0<k<j
Pj COBZj k41 — PjCOSTjik
an,j(k) =
Pn(p; cosh z;.k41) — pn(p; cosh Ij_k)’ i<k<K.
pjcoshzjx4r — pjcoshzj =
' (8)

3.3. Exponential Radial Sampling

All of the following results are new. Instead of choosing
z;x = cos~'(k/j) or cosh=!(k/5) as in [5], we choose

o cos™! (A=) | 1<k<;
Tik =Tiok =1 cogh~? (e2*-0), j<Ek<K, ©)

and we recall from (6) that z;0 = x/2 for all j, yielding

ani () = an(k) = 2eltt) ZBalre) g
Tk4l — Tk

which again is clearly a discrete representation of pl(r).
Defining

. CcoSnZj .y —cosnZ; F>0
sa(y) = { e—nz,-_f; - =% ? 7 <0 (11)

and substituting in (7), we obtain our main result:

pn(p;) = éa,.(O)(cos nzj_; —cosnx/2)
| K=
+ — an(k)sa(j —k),n,5 #0. (12)
nx k=1

Equation (12) computes the exponentially-sampled im-
age harmonics un(p;) from the exponentially-sampled pro-
Jection harmonics pn(rx). First, (10) “differentiates” pn(rk);
then the result is convolved with sn(j) to compute un(p;)
(the first term in (12) is an end effect).

This is analogous to, but different from (33) in [5] in that
we are using exponential radial sampling which i) turns the
reconstruction problem into convolution, and ii) allows cir-
cular harmonic reconstruction method to be used for region-
of-interest tomography. Note that (12) cannot be obtained
by a simple discretization of the continuous result due to
the end effect and sampling points.

For n = 0 and j =0, it can be shown that [5]

K-1

I"O(pf) = _% Z ao(k)(z,-_k_l - zj-k) (13)
and
K-1
un(o0) = (@) = { 7 [2“0(0) + Agaom} , n=0
0, B n#0.

(14)

3.4. Equiangular Sampling

Since we are given p(ri,8,) for 8, = %’"n, n=0,...,N-1,
we consider p(r,0) = 0 for 8 # 2Fn. Since p(r,d) is dis-
crete and periodic in 6, its Fourier transform is also discrete
and periodic. Since by assumption p(rx, §) is angularly ban-
dlimited, (3) becomes the discrete Fourier transform

N-=1
pwn=%2}mmmﬁ%ﬂn=-muy”wn

im0
(15)
Similarly, (2) also becomes a discrete Fourier transform. To
reduce ringing effects caused by the sudden truncation of
the circular harmonic expansion (2), we use not (2) but a
windowed version of (2)

Nf2
n(pj, 1) = Z wnﬂn(PJ')CJ%n" l=0,...,N~],
n=~N/241
(16)

where w, implements a Hamming window.

Finally, we compute the number of operations required
to carry out our algorithm. All of the equations can be
implemented using the FFT; for N = K, this requires
O(N?log N) operations. Since both (10) and (12) can be
parallelized in n, an even greater computational speedup is
possible. By comparison, FBP requires O(N?) operations
to compute the image on a N x N grid. The computational
savings is thus a factor of O(N/log N).

4. NUMERICAL EXAMPLES

4.1. Numerical Procedures

To demonstrate the effectiveness of our algorithm in achiev-
ing high resolution in a region of interest of the image while
minimizing artifacts, we present some simulations using the
Shepp-Logan phantom. The ROI is defined to consist of
the three small ovals at the bottom. Accordingly, the im-
age has been translated in the y-direction by 0.605, so that
the small circle, surrounded by two small ovals, is now in
the center of the image. All of the images shown in this
section are displayed on a 256 x 256 grid, and for the pro-
jections N = 512 and K = 128 (i.e., 128 views at 512 an-
gles). For exponential sampling, r; = 0.01, rx = R = 1.6,
so A = In(1.6/0.01)/127 = 0.040. To display our recon-
structed images, we use a bilinear polar-to-rectangular in-
terpolation algorithm.

Suppose that we are using this interpolation algorithm
to display a 256 x 256 image covering the entire phantom.
Then pixels far away from the origin of the image will be
interpolated using reconstructed polar values u(p;, ¢n) that
are not very close to those pixels, while pixels close to the
origin of the image will be interpolated using p(p;, #») that
are very close to them. In such a situation, many values
of u(pj,dn) with very small p; will not be used at all in
the interpolation to a rectangular grid, since they will not
be closest to any pixel. Hence, we may “zoom in” to the
origin of the image, i.e., display 256 x 256 images that cover
smaller and smaller areas around the origin.
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To evaluate our results, we compare them to analo-
gous results obtained using the same number (N K') of sam-
ples, but with uniform sampling in r, reconstructed us-
ing FBP. The projections p(rx,f.) are collected for ry =
BE %, k=0,...,K—1;for r > ri, we set p(r,0,) =
p]zn‘—_;,ﬁ,.) (this proved to be surprisingly effective, much
more effective than setting these values to zero). The pa-
rameter A determines the maximum radius that is sampled;
as A increases, a smaller region is sampled more finely.

4.2. Discussion of Results

Figs. 1-3 compare results using our algorithm (Figs. 1 and
2) to those using FBP (Fig. 3). The close-up views in
Figs. 2 and 3 were obtained as follows. For FBP, we used
A = 8 to generate Fig. 3. For our algorithm, the excess
of p(pk,0n) near the origin allows us to “zoom in” to the
origin.

In Fig. 1, using our algorithm, note the poor resolution
at the top of the image. This is as expected — this region
is far from the origin, so its resolution should be poor. But
the ROI at the bottom of the image is very sharp.

Zooming in on the ROl in Figs. 2 and 3, our algorithm
continues to produce a sharp image, with only a few faint
circular artifacts. In contrast, FBP produces an image in
which the three ovals are almost washed out. This is the
familiar “dishing” artifact, in which the image is artificially
bright near its center. Note that this is a very serious error,
since the three-oval ROI lies inside another oval, which must
also be reconstructed correctly (i.e., the constant but non-
zero background must also be reconstructed). It is caused
by the infinite support of the FBP filter A(r).

More details on all of these results, including effects of
noise, can be found in the full paper {6]. -
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