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ABSTRACT

We use a series-expansion approach and an operator frame-
work to derive a new, fast and accurate, iterative tomo-
graphic reconstruction algorithm applicable for parallel-ray
projections that have been collected at a finite number of
arbitrary view angles and have been radially sampled at
a rate high enough so that aliasing errors are small. We
use the conjugate gradient algorithm to minimize a regu-
larized least squares criterion, and we prove that the main
step in each iteration is equivalent to a 2-D discrete convolu-
tion, which can be cheaply and exactly implemented via the
FFT. The proposed algorithm requires O(N? log N) multi-
plies per iteration to reconstruct an N x N image from P
view angles, and requires the storage of half of a 2N x 2N
PSF

1. INTRODUCTION

In many applications of computerized tomography, such as
in electron microscopy, astronomy, geophysical exploration,
nondestructive evaluation, and others, it is not possible to
collect a complete set of projections. Applying standard
transform-based reconstruction algorithms, such as filtered
backprojection (FBP) [1] to such limited-data problems re-
sults in poor reconstructions with severe artifacts. Iterative
tomographic reconstruction algorithms, on the other hand,
are capable of producing high-quality images from limited
data since they can explicitly take into account the missing
data, and they are able to incorporate a priori information
about the solution to regularize the problem. The major
drawback of these iterative algorithms is their computa-
tional cost, with just one iteration typically requiring more
computation than is needed by the entire FBP algorithm.
For example, a common approach to iterative tomo-
graphic reconstruction is to formulate the problem as a large
system of linear equations. That is, the reconstructed im-
age is modeled as a weighted sum of shifted basis functions
(usually square pixels), and the vector of discrete projec-
tion data g is then related to these weights via a large
matrix equation g =~ Af, where A is the projection matrix
and f is the vector of weights. An optimization problem
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incorporating a priori information about the solution (and
possibly the noise) is then established from this data model,
and any of a number of iterative techniques is used to solve
the problem. Typically, each iteration will require one or
more matrix-vector multiplication involving A or AT. If
we have M x P raysums (the result of collecting M samples
from each of P projections), and we wish to reconstruct an
image that consists of N x N basis functions, then A will be
a PM x N? matrix. Although A can be made sparse by us-
ing local basis functions (such as square pixels) to represent
the reconstructed image, the matrix will still have about
2PN? non-zero elements. Hence, O(PN?) multiplies are
needed for one iteration of a typical matrix-based iterative
algorithm. (For comparison, the total number of multiplies
required for the standard FBP algorithm is about PN?).
In addition the 2P N? non-zero elements of the projection
matrix A must be stored.

In [2] Medoff uses an operator framework to derive an it-
erative convolution backprojection algorithm that does not
require the storage of a large projection matrix. Each it-
eration requires a forward reprojection of the estimate im-
age, followed by a filtered-backprojection step. Unfortu-
nately, the ideal reprojection and filtered-backprojection
steps must be approximated, introducing errors into the
algorithm that cause it to diverge if run too long. In addi-
tion, both the reprojection and filtered-backprojection steps
require about PN? multiplies to compute.

Fourier-based iterative tomographic reconstruction al-
gorithms (eg., [3] ), are less general than their algebraic
counterparts but are computationally less costly per iter-
ation. These algorithms essentially convert the tomogra-
phy problem to one of spectral extrapolation by assum-
ing that parallel-ray projections are available over a con-
tinuous range of radial offsets and (usually) angles. Each
iteration typically consists mainly of a 2-D filtering oper-
ation, which can be performed via the FFT, and requires
much less computation than most other iterative algorithms
(O(N?%log N) multiplies per iteration). In addition, there
is no need to store a large projection matrix. Unfortu-
nately previous Fourier-based algorithms have not properly
modeled the discrete nature of the data. Besides approx-
imating the continuous Fourier transform by the discrete
Fourier transform, the projections are typically assumed to
be available over a continuous range of angles, instead of at
a discrete set of angles.
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In this paper we use a series-expansion approach [1] and
an operator framework to derive a new, fast and accurate,
iterative tomographic reconstruction algorithm that is ap-
plicable for parallel-ray projections that have been collected
at a finite number of arbitrary view angles and have been
radially sampled at a rate high enough so that aliasing er-
rors are small. We use the conjugate gradient algorithm
to minimize a regularized least-squares criterion, and we
prove that the main step in each iteration is equivalent to a
2-D discrete convolution, which can be cheaply and exactly
implemented via the FFT.

2. A REGULARIZED SERIES-EXPANSION
FORMULATION OF TOMOGRAPHY

Our goal is to reconstruct an image f € L*(R®) that is
an estimate of f € L?(R?) from a set of noisy, sampled,
bandlimited parallel-ray projections of f collected at a fi-
nite number of view angles, 8, p = 0,1,--+, P — 1. Using
a series-expansion approach [1], we represent the estimate
image f by a linear combination of shifted versions of a sin-
gle generating function b € L%(R?). More specifically, we
require that f = Qfp , where fp € RV* is a discrete 2-D
image, and the interpolation operator Q : RV*¥ L*(R?)
is defined by
N-1N-1

Qfo(z,y)=Y_ Y fo(mnb(z-my—n). (1)

n=0 m=0

We model the set of projections gp € {Zz(Z)}P as gp ~
Afp, where the linear operator A : RV*Y - {22(2)}P is

defined as A = STRAQ. Here, Ra : L*(R?) - {L*(R)}"
is the discrete-angle Radon transform operator defined by

Raf(r,p) = /f(rcosﬂ,, —tsinfp,rsin b, + tcosby) dt,

)
and St : {L*(R)}" — {€%(2)}" is the radial generalized
sampling operator defined by

Srga(m,p) = / galrp)¥(r —mT)dr,  (3)

where v € L?(R?) is the detector response function, r € R,
0 e0,7], p=201,---,P-1,m € Z. and T is the
sampling period.

We then seek a solution to the following regularized,
least-squares optimization problem:

r?in{-;-”go “AfD”%/v +Zi:AiCifD} ) (4)

D

where C; : RV — R and X\; € R are the iy regu-
larization functional and regularization parameter, respec-
tively, and || - |l is a weighted norm defined by |lgp|l5y, =
P-1 oo
p=0 M= —~00 gD
nite spectral weighting operator W : {£%(Z )}P - {4z )}P
being defined by

FoWgp (u,p) = Wp(u)Fpgp(u,p),

(m,p) Wgp(m,p) with the positive defi-

where Wy (u) > O for all ju} < m,andp=0,1,---,P—1, and
Fp: {éz(Z)}P - {Zz(Z)}P is the Discrete-Time Fourier
transform (DTFT) operator by
+o0
Fogp(u,p)= Y go(m,p)exp[—jum].

m=—0c0

3. A NEW, EFFICIENT IMPLEMENTATION

Using the conjugate gradient algorithm to find an approxi-
mate solution to (4), it is easy to show that the main compu-
tational cost of finding f¥, the k-th iterate of the conjugate
gradient algorithm, is in computing A*W.AfE™" [4], where
the adjoint of A4 is A* = Q" R4Sz . It is straightforward to
show that: Q* : LZ(R?) - RM¥*¥ is defined by

Q" f (m,n)

/ / £(&,9)b(z = m,y - n)dody
= B**f(man): (5)

where b(z,y) = b(—z, —y), and b* % f represents the two-
dimensional, continuous-index convolution of b with f. Also,
Ry = Ba : {L*(R)}" — L*(R?), the discrete-angle back-
projection operator, is defined by

P-1
Baga(z,y) = »_ ga(zcosb, +ysmby,p),  (6)

p=0

and S5 : {£2(2)} = {L*(R)}", is defined by

Stgp (rp)= Y gp(m,p)$(r—mT).

m=—00

We now prove that if the projections have been bandlimited
before sampling so that no aliasing occurs, then we can
exactly compute A*W.Afp via a 2-D discrete convolution,
and need only store half of a 2N x 2N point spread function
(PSF).

In what follows, the standard 1-D and 2-D Fourier trans-
form operators are denoted by F and Fs, respectively. In
addition, we define the Fourier transform operator Fa :

{2 R)}" = {L*(R)}" vy

Fagalw,p) = / 94(z,p) expl—jw] d.

One-dimensional, continuous- and discrete-index convolu-
tion will be denoted by dxg¢ and f *h, respectively, whereas
two-dimensional, continuous- and discrete-index convolu-
tion will be denoted by dx*q and f ** h, respectively. Fur-
thermore, we define the one-dimensional continuous-index

convolution between two functions ga,hs € {L"’(R)}P by

gaxha(r,p) = /yA(t,p) ha(r —t,p)dt.

In order to prove the main result we need the following
two easily proved lemmas:
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Lemma 1 (Shift lemma) Let the shift operators Z™" :
L*(R?) = L2(R?), and 27" : {LX(R)}" = {L*(R)}, e
defined by Z™" f(z,y) = f(z~m,y—n) and Z3""ha(r,p) =
ha(r — (mcos, + nsinb,),p), respectively, for m,n € Z.

Then (1) RaZ™" = Z7""Ra, and (8) BAZ]"" = Z™"Ba.

Proof: See [4].

Lemma 2 (Convolution lemma) Let f € L*(R?), ga €
{L*(R)}". Then f*+Baga(z,y) = Ba(ga*Raf) (z,y).
Proof: See [4].

Theorem 1 Ify € L*(R) in (3) is chosen so that Fp(w) =
0 for |w| > x/T, then for any fp € RN*¥,

A‘W.AfD (k,l)=§**fD (kil)’ (7)

for 0 < k,l < N, where

pP-1

&m,m) =) pa(meosty +nsindy,p),  (8)

p=0

and pa € {L*(R)}" is defined by

Fapalw,p) = %Wp(wT) | Fop(w) Fab(w cos fp, wsin 8,)|%.
9
Proof:
A"WAfp (k1)
= Q"BaSTWSTRAQSD (k1)

N-1N-1

= > " fo(m,m)n(m,n, k1), (10)
m=0 n=0

where
n(m,n, k1) & Q"BaSsWSTRAZ™ b (k,1).  (11)

Qur goal is to reduce (10) to a convolution, by showing that
n(m’nv k7l) = g(k - mvl - n)'

Consider first the operator M 2 SrWST, and note
that M acting on any ga € {L"’(R)}P is equivalent to the
following steps: 1) convolving each of the P 1-D continuous-
index functions of g4 with ; 2) sampling each of the re-
sulting P functions with a sampling period of T'; 3) digi-
tally filtering the p:;» sampled function with Wp, for p =
0,1,---,P —1; and 4) reconstructing P continuous-index
functions by interpolating each of the resulting P discrete-
index functions with . Hence, if ¥ is chosen so that
Fip(w) = 0 for |w| > 7/T, so that there is no aliasing after
the sampling in Step 2, then it follows from the Shannon
sampling theorem that

FaMga (@,p) = 2 WD) | F9W)I° Faga(w,p).  (12)

Note that M is a linear shift-invariant filter in the radial
variable r.

Now, using (5), Lemma 1, and the fact that MZJ" =
23" M, we have:

n(m,n,k,l) = bxxBaMRsaZ™™b(k,1) (13)

= bx*BaZ7"MRab(k,) (14)

= bxxZ™"BaMRab(k,l)  (15)

= bxxBaMRab(k—-m,l—n) (16)

= £(k—-m,l—n), (1

where £(k,1) = bx *BaMRab(k,l). Furthermore, from
lemma 2 it follows that

Ek,l) = Ba((MRab)*Rab)(k,1) (18)
P-1

= ZpA(kc050p+lsin0p,p), (19)
p=0

where pa(r,p) = (MRab)*Ra4b. Using the projection-
slice theorem, FaRab(w,p) = F2b(wcosfp,wsinby), and
FaRab(w,p) = Fzb(wcosbp,wsinbp), where F2b denotes
the complex conjugate of F2b, so that with (12) we obtain
1

TWp(wT) | Frp(w) Fob(w cos 8y, w sin 0,)°.

(20)

Fapa(w,p) =

O

Note that although the support of £ will be over all of
Z?, we only need to store £(k, 1) for 0 < k,! < 2N because
we need to compute £ fp (k,!) only for 0 < k,I < N, and
fo(m,n) is defined only for 0 < m,n < N. Furthermore,
because £(k,1) = £(—k, —1), only half of the 2N x 2N ele-
ments of £ actually need to be stored. In addition, we can
compute the convolution in (7) quickly and exactly by first
zero padding fp to be of size 2N x 2N, taking the 2-D FFT,
multiplying the result pointwise with the 2-D FFT of £, tak-
ing the inverse 2-D FFT, and truncating the result to be of
size N x N. Using this method, the number of multiplies
needed to compute A*WAfp, and hence (approximately)
one iteration of the conjugate gradient algorithm, is about
24(1+log N)N?, where N? is the number of elements in fp.
Note that the computational cost of the proposed method is
independent of the number of view angles and the choice of
b used to represent f (cf. Eq. (1)), whereas in the standard
algorithms the cost increases linearly with both the number
of view angles and the radius of support of b.

In addition to calculating A*W.AfE at every iteration,
we must also calculate gp = A" Wygp = Q" BaSrWgp once
as part of the initialization of the conjugate gradient algo-
rithm [4]. It is straightforward to show, in a manner similar
to the proof of Theorem 1, that

P-1

gp(m,n) = Z'y,;(mcosﬁp +nsinbp,p), (21)
p=0

where 74 € {L2(R)}P is defined by

Favalw,p) = (22)
Fogp (wT) Wp(wT) Fih(w) F2b(w cos b, wsin 6,).
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Figure 1: (a) Full-angle FBP reconstruction. (b) Limited-angle FBP reconstruction. (c): Limited-angle reconstruction using

the proposed algorithm.

Note that both (8)-(9) and (21)-(22) are similar to the stan-
dard FBP algorithm, where the filtering now varies with
projection angle. ‘

Although explicit formulas for the evaluation of the PSF
£ and the discrete image gp are given in (8)-(9) and (21)-
(22), respectively, computing their exact values is usually
not practicable. The difficulty arises in evaluating ps or
~4 at the exact points required by (8) or (21), respectively.
Fortunately, very close approximations to § and gp can be
easily calculated by using linear interpolation on finely sam-
pled versions of p4 and «ya, respectively. By creating a sam-
pled version of Fapa (or Favya), padding with zeros and
then taking the inverse FFT, a close approximation to a
sampled version of pa (or va) can be cheaply calculated.
Using a large amount of zero padding and a small sampling
period will increase the accuracy in computing £ (or gp)
at the expense of increased computation. This increase in
computation is small compared to the overall cost of the
iterative algorithm, making it reasonable to create very ac-
curate approximations to £ and ¢p. In addition, for many
scenarios multiple reconstructions will be done using the
same projection geometry, so that £ need only be computed
once and stored for future use.

4. NUMERICAL EXAMPLES

To demonstrate the effectiveness of the proposed algorithm
we reconstruct a phantom from simulated parallel-ray pro-
jections collected by unity-spaced detectors that integrate
evenly over a width of one. (Hence, the projections are
slightly aliased.) The true detector response, 1, was as-
sumed to be unknown, and the ideal bandlimiting filter
was used for ¢ instead. The spectral weights Wp, for p =
1,2,---,P — 1, (used in the weighted norm of (4)) were
chosen to be |

1
Wp(u)=(2_7r)'|u|H(u): p=1,2,---,P—1,

where H(u) is a Hanning window. The basis function b,
used to represent the estimate image f, was chosen to be

the tensor product of the cubic B-spline, and the spacing
between coefficients was normalized to one in each coordi-
nate and was equal to the spacing between the radial sam-
ples of the parallel-ray projections. The displayed images
are sampled on a 240 x 240 grid with unity spacing in each
coordinate.

Figs. 1 (b) and (¢) compare limited-angle reconstruc-
tions using the standard FBP algorithm and the proposed
algorithm (after 80 iterations), for 112 noiseless projections,
evenly spaced from —79° to 79°. A full-angle (256 projec-
tions evenly spaced over 180°) FBP reconstruction is shown
in Fig. 1 (a). The regularization functionals used in the it-
erative algorithm penalize image values that exceed a min-
imum and maximum value, as well as the sum of absolute
image gradients. (Although for small gradients, the square
of the gradient is used instead of the absolute value.) Note
that the reconstruction from the proposed algorithm has
none of the severe artifacts seen in the FBP reconstruction,
and is very close to the full-angle reconstruction except for
the blurring of the long, horizontal ellipses.
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