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ABSTRACT

We consider the problem of spotlight-mode synthetic aper-
ture radar (SAR) imaging for an arbitrary radar path. A
general imaging scenario involves a 3-D scattering surface
with data collected along an arbitrary 3-D radar path. This
approach is useful, for example, in military applications
where the radar platform may undergo some maneuvers,
and in radar astronomy where the relative motion is, at
least in part, determined by the natural paths of celestial
bodies. We show that nonideal platform motion can create
phase variations in the data which lead to spatially-varying
shifts and blurring. A correction procedure is proposed and
demonstrated.

1. BACKGROUND

We consider the problem of SAR imaging for an arbitrary
radar path. Most SAR. formulations assume an ideal radar
path, such as from rectilinear motion. However, there are
cases where the radar platform may be required to fol-
low some other path, such as in military applications or
in radar astronomy. For instance, we have processed Lunar
data from Arecibo Observatory, where the relative motion
is determined by the rotation and orbit of the Earth and
Moon [1]. We have seen that even slight deviation from
the ideal radar path causes degradation in Lunar images
formed with a 2-D SAR algorithm.

In principle, data from a 3-D radar path can be used
to form a 3-D image, using an extension of the 2-D polar-
format spotlight-mode SAR algorithm [2, 3, 4]. Any given
range-bin datum is a measure of the projection of the reflec-
tivity of all illuminated scatterers lying along an approxi-
mately planar wavefront; the 1-D Fourier Transform (FT)
of a set of planar projections yields a linear ray of the 3-
D FT, according to a 3-D extension of the projection-slice
theorem. Thus, 3-D Fourier samples are computed via an
FFT of the range-bin data, and the 3-D Fourier data can
be inverse transformed to form a 3-D image. However, in
practice, what is often most useful is a 2-D image formed
by projecting the 3-D surface onto a plane.

If the shape of the scattering surface is known a priori
(e.g. a sphere), it is possible to form a sparse 3-D image
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from sparse 3-D Fourier data. In principle, this can be done
by solving a set of simultaneous equations of the form

F(X,Y:,Z;) = Z f(zk,yk7zk)e_j(=kxi+ykyi+zkzi) (1)
k

where (zk, y, 2¢) is a spatial location on the known scatter-
ing surface, F(-,-,-) are the measured Fourier samples and
f(-,-,-) are unknown reflectivities, which can be mapped
onto a 2-D image. However, for a M x N image, solution
requires inversion of a NM x NM matrix, with computa-
tional complexity O(N®M?3). Moreover, the matrix may be
ill-conditioned. Thus, this method is generally impractical,
unless the form of the set of equations is such that well
conditioned, fast methods, such as an FFT, can be used.

The approach taken here is to modify the 2-D imaging
algorithm based on a 3-D analysis of the effect of variations
in the radar path. Section 2 shows that a nonideal radar
path results in a multiplicative phase error in the Fourier
domain. In Section 3, we linearize the phase error, and de-
rive the corresponding shifts in the spatial domain. Section
4 presents a method for compensating for linear phase error,
along with some examples. The resulting method is rela-
tively efficient, numerically well conditioned, and though
not exact, effectively compensates for the Fourier phase er-
ror associated with an arbitrary path.

2. DERIVATION FOR AN ARBITRARY
RADAR PATH

Suppose the radar transmits a nominal pulse of the form
s(t) =€, 0<t<T, (2)

where T is the compressed pulse width and w, is the radar
center frequency. Note that some form of range compression
may have been used to achieve the range resolution of the
nominal waveform. The return from the nt* pulse at time
t after start of transmission is

pa(t) = A-[dz [dy [dz f(z,y,z)erwotmErmEw)
UoD) ey )<Y

(3)
where f(z,y, z) is the complex reflectivity, r,(z,y, 2) is the
range between the radar and (z,y, z) at the time of the nt*
pulse, and A is a scale factor accounting for transmit power,
attenuation factors, etc. The demodulated return for range
bin &, pn(k), is phase corrected to remove the motion of the
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Figure 1: Imaging geometry for radar at (Zn,¥n, 2n)-

center point, and thereby simulate constant distance from
the center of the imaging area, i.e. 7(0,0,0) =0:

(k+1)T+2%R, ] -
Palk) = 4 / dt e 7ipa(t)e’ ot (4)
kT+%Rn

for k = —% +1,...,%. By proper choice of units, and
assuming constant attenuation over time, we can treat the
product of all scale factors as unity. Then the range-bin
value is approximately

Ba(k) ~f dz [ dy [ dz f(z,y, 2)e™ S Cn G0 =Ra),

rn(2,¥,2)—Rn=

(5)
Consider a single point scatterer
f(z,9,2) =8(z ~ To, ¥ — Yo, 2 — 2%a), (6)
where most of the range-bin values will be zero. Ignoring
the possibility of range-bin straddlini, the nonempty range
bin occurs for n (%o, Yo, %) — Rn & &L = kég, where &g is
the range resolution, i.e.

_jz—%“(rn(zo,‘ﬂo:za)—Rn) = ra(To,¥0,20)—Rn
palk)=1 © ko= falzadp el =fe
0 otherwise.

(M

The range to a given point scatterer depends on the

position of the radar, which can be described. in spherical

coordinates (Rn,6n, %), given relative to the center of the

imaging area, as shown in Figure 1. The corresponding
Cartesian coordinates are

Zn = —Rpcosbpcosyn
Yyn = Rnpsinbncosyn
Z2n, = Rn 5in¢n . (8)

The orientation of the axes is such that the radar travels
nominally in the x-y plane with viewing angle 6 near zero.
We seek to form the 2-D image f(z,y) = [dz f(z,y,2).
For the usual case where the illuminated scatterers are con-
centrated on a surface that can be described as a function
of z and y, the integral merely results in a top view of the
surface reflectivity. A Taylor series expansion of

rn(2,9,2) = V(T —2)* + (yo — 92 + (22 —2)*  (9)

yields

A 2
ra(09,2) & R +R(z,y,2) + T @B )

2R,

where
rR(z,y, z) = £c0s0ncosPn — ysinBncosyn — zsinahn (11)

and

Ti‘(.’L’, Y, Z) = \/(‘7:2 + y2 + 22) - T',}}(.’E, y7z)2‘ (12)

The term rf gives the displacement from the origin in
the “range” direction (from the radar to the origin), while
T (Zo, Yo, Zo) is the orthogonal component of the displace-
ment. For relatively large R,, the last term is small in (10).
Note that without the last term, the range approximation
would correspond to a planar wavefront assumption.

Return now to the point-scatterer range-bin data, where
the arguments of r,(-,-,+) and = (-,-,-) will be omitted for
simplicity. Even though we cannot apply the 2-D projection-
slice theorem, an FFT of the range-bin data still yields in-
formation about the 2-D FFT of f(z,y) = 6(z — zo, ¥y — ¥o)-
Specifically, for K range bins, the FFT of p is

K/2
Pafm) = D pa(kleTEM
k=—K/2+1
= g immRa) (3t gEom)
— e‘j("'n—Rn)nm
= e i(@0c0sbn cos n —yosinbncosdn)m ,—jde(n,m)
= F(Xam,Ynm)e i%emm (13)
where
Iy Qm 112
$e(n,m) = 2oZnm+ m[rn] (14)
2w 27 K K
Qm = co+m—m m=—?+1,...,?
Xom = SQmcosbpcosiy
Yam = —msinfncosyn
Znm = —Qmsinin.

Thus, the effect of wavefront curvature and a nonideal
radar path can be modeled as a phase error in the Fourier
domain. Instead of computing samples of the Fourier data,
as would be the ideal case with a planar wavefront and radar
path in the x-y plane, the data computed are corrupted with
a multiplicative phase error e=7%<,

3. IMPACT ON IMAGING

Over sufficiently small regions of the Fourier data, the phase
error can be approximated with

Ode
(X, Y) = de l(x,,v,) + aiX l(Xa,v0) (X — Xo)

9%
oY
where (X,,Y,) is the center of the Fourier data, and ¢ is a
continuous function such that ¢.(n,m) = ¢o(Xn,m, Yn,m)-

+ l(x0,v.) (Y = Yo) (15)
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The linear phase modulation will result in a shift in the
spatial data, which is spatially-varying, since ¢. depends
on the location (z,, yo, 20) of the point scatterer.

The amount of shift is the value of the corresponding
partial derivative evaluated at the center of the Fourier
data. To express the phase error in terms of X and Y,
define 2 = \/ZX 24+Y?+ Z%). For sufficiently small regions
in Fourier space, write Z = aX + bY + ¢, and also define
a functional relationship between the lateral viewing angle
and the range: R, = g(tanfyp). Then (14) becomes

Q
(X.Y) = 2Z+ ——~- (16)
X) 29(x%
2,2, 2 ( X Y PAY:
[20+y0+z0 (m09+y09 +z°Q) ]'
Here, the partial derivatives of g(-) are
O _ do & 9-¥/X)
8X ~  dt d(tand) 80X
R ,,Y
= Ecos Gﬁ, (17)
9 _ R 2p-1
oy = §°° 0X (18)

where 0 = tan”*(~Y/X), and R = g(~Y/X). No imaging
is possible for § = 0. Then the amount of shift is

1]
Az, = ¢ X X0 %)
az,,
+ T&L(ZO;yo)Zo)z(a_Q | R, sineo)
2R° ° Roe.o 003¢o
To (.’Eo, Yo, Zo) N To + a2,
L -2t % (19
* R° ( r},*(a:o, Yo, zO)) ( )
Ode
Ayo = a@ I(Xoryo)
= bz
+ ri‘(zo,yo,zaf(a_g ot B, coseo)
2R, Y ° " R.6, cosy,
To (2'01 Yo, Zo) Yo + bz,
r-aae— —_——1} (2
+ R, (8Y lo rf(a:o,yo,zo)) (20)
where
g—ié lo = XO—;% = c080,c08Y, — asini,
o0 Yo+bZo . .
% e = = —8ind,cost), — bsinte. (21)

The subscript naught is used to indicate values evaluated
at (X01Y0)1 e.g. RO = g(_YO/XO)1 90 = tan_l(—x’/XO)a
etc. In (19) and (20), the terms involving a or b are due to
vertical variation in the radar path, and the terms involv-
ing R, are due to the curvature of the wavefront. Usually
the latter will be small for large R, in the denominator.
However, when the ratio of R to Rf is large, then wave-
front curvature may cause a perceptible shift, as is the case
for severely squinted SAR [5]. A high ratio indicates that

the radial velocity component is much larger than the lat-
eral component, as would be true in runway imaging for an
aircraft landing application. If the range changes rapidly
enough during data collection, the change in the curvature
of the wavefront leads to phase errors that are more signif-
icant than that caused by the curvature alone.

4. IMAGE RECONSTRUCTION

For an arbitrary radar path, we can partition the corrupted
Fourier data into subsets with approximately linear phase
error, and process each subset separately using an inverse
FFT, after interpolating the samples to a Cartesian grid.
In general, suppose we wish to form a 2-D image

f(z,9) = f(=z,y, 2.(z, 1)), (22)
where 2,(-,-) is a function describing the surface. Since a
general reflectivity function can be modeled as the super-
position of several point scatterers, first consider imaging
the single point scatterer in (6). If we process a rectan-
gular segment of corrupted Fourier data with an inverse
two-dimensional FFT, the resulting subimage will be

: " i f —Jjde(X,Y
@m)? JI.dX [T dYF(X,Y) e ¢(XY)
eHEX+yY)
e—i¢ T
27r)§ f de dy
eI l(@o+AT0=2)X +(yo+-Byo=1)Y]

9(z,v)

(23)
where X and Y have been normalized to vary over [—n, 7],
and

(T, Yo) = be(Xo, Yo) = AZoXo — AyoYo.  (24)

Then

Ayo). (25)

The point-scatterer location will be shifted according to
(19) and (20). For a more general reflectivity function,
where

g(z,y) =€~ smc(a: xo — Azo)sine(y — yo —

f@y) =) oxd(z —zi,y — 3e), (26)
k
the corresponding subimage would be
9(zy) = X, ore ICERVE)  gine(z — 3k — Azy)
-stne(y — ye — Ayk)-
27
Each subimage is “warped” differently, depending on the
values R,,R,,8.,9,, and 1, that correspond to the center of
that Fourier data subset, and the appropriate a, b, c.

If the function z,(z,y) is known, it is possible to re-
verse the warping to some degree, and use the corrected
subimages to form a single higher-resolution image. The
subimages can be unwarped according to

fz,y) = g(z + Az, y + Ay)edS=¥) (28)

since a point scatterer at (z,y) appears at (z + Az, y+ Ay)
in the warped image g. This shifts the peak of each sinc
component by the correct amount.

For a simple demonstration, consider a 1-D scattering
surface with two point scatterers along the y-axis, and a
“rooftop-shaped” radar path where z, increases linearly for
half of the data samples, and then decreases at the same
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Figure 2: A high-quality high-resolution image is formed by
unwarping the low-resolution subimages.
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in Figure 3a. This extended target is actually composed of
a cluster of point scatterers on the y-axis, with reflectivity
phase randomly varied [6] between 0 and 27. The phase
of the reflectivity, though randomly selected, is assumed to
remain constant for various viewing positions. Figure 3b
shows the corresponding uncorrected image. One subimage
is shown in Figure 3c; the other subimage is similar, but
flipped. Note that only some of the scatterers are observ-
able in each subimage. After correction according to (28),
the two subimages are added to get the image in Figure 3d.
The measured data do not generally specify a unique so-
lution, but in assuming that unknown Fourier samples are
zero, we implicitly obtain minimum-norm solutions for the
subimages, hence, the extra nulls in the image. The noisy
appearance is analogous to speckle in a 2-D image.

5. SUMMARY

Given radar data collected along an arbitrary data path, we
have demonstrated that it is possible to construct 2-D im-
ages of 3-D surfaces if the elevation function of the surface,
20(x,y), is known. By partitioning the data into subsets
that can be interpreted as Fourier data with a linear phase
error, and deriving the corresponding shifts and phase dis-
tortion, we are able to compensate for the distortion in the
corresponding subimages. The subimages can be formed
efficiently using the usual FFT processing, before compen-
sating for the distortion, and combining the images to form
a high-resolution image. The compensation is not exact,
since it shifts only the peaks of sinc components by the cor-
rect amount, but the processing is well conditioned, and it
produces improved results.
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