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ABSTRACT

This paper addresses the properties of the noise in Grid-
ding reconstruction, an algorithm for reconstruction from
nonuniform samples . Sequences with time-varying gra-
dients, such as Spiral or Projection Reconstruction (PR)
techniques, are being increasingly used in Magnetic Res-
onance Imaging (MRI). Since these techniques sample k-
space nonuniformly, some kind of algorithm is needed to
map the data onto a Cartesian frame to allow an inverse
Fourier transform through an FFT. We present here an an-
alytical characterization of the image noise after Gridding
and inverse Fourier transform for the most popular sam-
pling techniques used in MRI.

1. INTRODUCTION

In many fields ranging from radio astronomy to Magnetic
Resonance Imaging (MRI), Fourier inversion of data not
falling on a Cartesian grid has been necessary. It is well
known the considerable numerical advantage of the Dis-
crete Fourier Transform through the use of the FFT, but
in many occasions the samples are not on a Cartesian grid,
so some kind of interpolation is necessary to obtain the
values on a Cartesian grid. Many algorithms have been de-
veloped for reconstruction from nonuniform samples such
as nearest-neighbor, truncated sinc function FIR interpola-
tors and bilinear interpolation [1]. The technique known as
Gridding reconstruction has proven to be very efficient in
terms of computation and artifact levels [1]; in its earliest
forms, different methods were used, such as cell summing,
cell averaging and Gaussian methods, all of them compared
in [2]. That algorithm has been deeply studied [1](3], but
there is no clear understanding yet on the properties of the
colored noise in the final data, goal of this work.

Gridding algorithm is not an interpolation technique
in a strict sense, since it does not necessarily assign the
same original value to sample points that fall on the Carte-
sian grid. O’Sullivan [1] shows that the optimal gridding
method is convolution with a sinc function of infinite ex-
tent, followed by sampling onto a Cartesian grid, but prac-
tical considerations require that the infinite sinc function
be replaced with a finite convolving function. The goal is
to make the inverse transform of the new data as close as
possible to the inverse transform of the original sampled
data within some region of the image domain. The discrete
implementation of the algorithm is as follows [4]:
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with 8ip = 2%ik,. M represents the noise in the Fourier
domain, and m the noise in the object domain. Greek in-
dexes are used for the original grid and Roman indexes for
the uniform grid. The variable k is used for the discrete
frequencies. C is the kernel used in gridding, and {la, %] a
distance that should be circular to prevent border effects,
although in real situations a simple non circular distance is
used, as will be the case here. The nonuniform sampling
will introduce a nonuniform weighting, and a division by
Pag, the estimated density of the sampling (predensity), is
introduced, to compensate this effect. Since that estimate
of the density is usually not exact, an additional correction
is incorporated, the postdensity ¢pq. In the object domain
a division by c;j, the inverse 2DFT of the discrete kernel in
the Fourier domain, is necessary to undo the effect of the
convolution in the Fourier domain.

2. NOISE PROPERTIES

We computed the first and second statistics of the noise
in the object domain, under the reasonable assumption of
white noise for the MRI signal.

The Input Noise has zero mean E(Mas) = 0, and is-
uncorrelated. We will assume the same variance for both
real and imaginary parts o2, with both parts uncorrelated.

Since the mean of the input noise is zero, the Object
Noise also has zero mean:
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After the whole reconstruction process, the object noise
is going to be colored, so we need to compute the correlation
in the final image. Using Equation 2 :

E(mi;) =
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From there, and after some simple algebraic steps we
can conclude that:
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where a new function has been defined

E(mijmp,) =

Ap,grs) = 3 ==Clllks.kall ke kel ()

a8 " oP
C(”kﬁ kﬂ"i "k,, kﬁ”)

3. INTERPRETATION

Since the discussion is easier in two than in four dimensions,
we will make some additional comments on the 1D case,
extending that interpretation to 2D afterwards.

It can be proved that the 1D results are analogous to
the 2D results:
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gives the ‘interpolated’ value from the sampled data
;E—C’(Hkq, ko|l), a kernel centered at q and weighted by the
inverse of p,, at the point p.

From that interpretation we can easily see that in the
case of an original uniform grid the expression A(p, q) can
be written as A(p — g) if a circular distance is used in the
borders, because in that case points with the same separa-
tion will give the same value of A(p, g) (both densities, pre
and post, are constant throughout the entire grid). There-
fore, to get white noise in the object domain, we need a
uniform grid with circular distance used in the gridding,
since the Fourier transform of a Toeplitz matrix (A{p — q))
is a diagonal matrix. And even in the uniform case the vari-
ance of the noise in the object domain will be nonuniform,
unless the original grid is exactly upon the desired grid.

From a filter perspective the Gridding algorithm for the
uniform case (DFT sampling) is a convolution, since the pre
and post densities are constant, and the filter is spatially
invariant. If the convolution is circular it can be thought
as a product in the object domain after the IDFT, unitary
transformation that preserves the noise as white, so the fi-
nal result is white. But if the convolution is not circular,
as is usually the case, we can represent the situation as in
Figure 1 (again in one dimension) for the uniform sampling
case. 2n samples are taken to consider the effect of noise

samples outside the n samples region, so that the convolu-
tion can still be thought of as a circular convolution; this
only works if the kernel width is less than n, usual case. A
product is needed afterwards to keep only the central sam-
ples used in the IDFT. A decimator in the final stage will
reduce the number of samples to n, the number we want.
The variance changes through the object and the noise is
no longer white, as can be noticed in the equivalent repre-
sentation. In the first product, ¢;’ is the inverse transform
of the kernel samples used, which does not necessarily coin-
cide with c;, unless the final grid lies exactly on the original
one. The filter present before the final division keeps only
the low frequencies. And then cl—, will cause high variance
for values of ¢ low. There is a simple explanation for this:
if we do not perform circular convolution in the Fourier do-
main we are making some errors at the edges, that means,
in the high frequencies. That error will spread over the
whole object in the object domain, and will be amplified by
low values of the kernel when dividing by the kernel in the
object domain. But this is true not only for the noise. Even
in a noiseless case, there will be reconstruction errors due
to the division by ¢;, that does not undo exactly the effect
of the kernel in the Fourier domain, especially noticeable at
those points where c; is low.

The extension of those ideas to the 2D case is straight-
forward: A(p, g, r, s) gives the “interpolated” value from the
sampled data —p:—pC(Hkr, kall, |lks, kg||), a kernel centered at

the point (r,s) and weighted by the inverse of pag, at the
point (p,q). According to that interpretation, no impor-
tant differences should be expected in the noise correlation
between different techniques with similar density distribu-
tions, as long as sampling is fine enough, since ’interpolated’
values from the weighted kernel will be similar. And the ob-
ject noise will only be white for the case of a uniform grid
and circular distance. Therefore, the noise is colored in any
practical application, where neither the distance is circular
nor the grid is uniform. Our task now is to see what that
correlation between pixels is like for typical cases.

4. RESULTS AND DISCUSSION

We studied the behavior of the noise for different sampling
schemes commonly used in MRI: 2DFT, Projection Recon-
struction (PR) and Spiral trajectories. Although it is not
necessary to make use of gridding for the 2DFT case (uni-
form sampling of k-space), it is worth doing it to see the ef-
fects on the noise and keep it as a reference. In the PR case,
60 radial lines were used; this technique provides higher
sampling density near the origin. And 20 interleaved spi-
rals form the Spiral trajectories, sampled in such a way that
the linear velocity spiral is constant (ignoring the singular-
ity at the origin). Sampling density is fairly constant in this
case, one of the advantages of this technique versus PR.

In our computations the uniform grid obtained after
applying gridding was 16x16 pixels, and a non circular dis-
tance was used. For the representation of the correlation
we used the correlation coefficient:

E(mijmy)

V(i kl) =
VE|mi; |2 E|mu |?

(10)
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Figure 1: Non circular implementation of Gridding algorithm for the DFT case.

We will refer to it as just correlation for simplicity. Since
we have four variables {the coordinates of two points), we
decided to focus our attention on the correlation between
the central pixel and the rest of the image (Figure 2), as
well as the correlation between one corner and the other
pixels (Figure 3): both are the extreme cases in our study.
For the first case, the axes (x and y) have higher values of
correlation, and that is why we decided to plot together the
absolute value of the correlation for different cases on one of
those axes. With the corner pixel, the correlation is higher
along the sides of the image.

The choice of the convolution kernel has been object of
extensive analysis [1][3]. We made the simulations with cir-
cularly symmetric triangular, Gaussian and Kaiser-Bessel
kernels. Since the trend shown by the different kernels was
essentially the same, we will only show here the results ob-
tained with the triangular kernel; the conclusions are also
valid for the other two kernels: the important factor is the
extension of the kernel energy. So our results were obtained
for different sizes of the kernel.

Figure 4 shows sections of the correlation between the
central pixel and the rest of the image, for the three sam-
pling grids ands for different sizes of the kernel. The 2DFT
case is used as a reference for the other cases: had the
convolution been circular the noise would be white, but as
Figure 4 shows, border effects correlate pixels, correlation
that becomes worse when the kernel gets wider. It can be
noticed that there are no major differences between the dif-
ferent sampling techniques. And the correlation magnitude
decays fairly fast, important to prevent possible artifacts in
case of high noise. The same can be shown for the correla-
tion between one corner and the rest of the image, with the
same dependence on the size of the kernel, although now
the corner is more correlated with the image than the cen-
ter. In this latter case, PR sampling shows slightly higher
values of correlation, whereas 2DFT and Spiral trajectories
are very similar.

An apodization function can be used in some situations
to soften the ringing effect caused by truncation of high
frequencies. We also studied that case, and as apodization
function we used the circularly symmetric Hamming win-
dow. Figure 5 illustrates the correlation with the central
pixel in one case (Spiral trajectories) where apodization was
used. Correlation functions are similar to the one shown for
the different techniques, although the resemblance is larger
between 2DFT and Spiral trajectories, as expected from

the quasi-uniform sampling density of the Spiral trajecto-
ries. Because of the apodization, border effects lose impor-
tance now; but the correlation shape with the central pixel
is broader than before, with less dependence on the size of
the kernel in the 2DFT case. The Spiral trajectories corre-
lation gets closer to the 2DFT correlation for large kernels,
because of the rough density estimation with short kernels.

The variance of the noise in the object domain is another
important element to comsider. As explained before, non
circularity is a key feature in this analysis, and even in
the uniform case without apodization function border errors
will cause a high variance of the noise at those points with
the lowest values of the kernel c;;, because of the division
in the last stage of the algorithm. Of course, as soon as
sampling leaves uniformity, the variance will no longer be
uniform, with high values at those locations where c;; is
very low.

5. CONCLUSIONS

A method to compute the correlation of the object noise
after Gridding reconstruction has been presented. With
our main focus on MRI, the three most popular techniques
used in MRI (2DFT, PR and Spiral trajectories) were ana-
lyzed. The three techniques yield similar results, something
remarkable for practical applications, although the resem-
blance is especially high between the 2DFT sampling and
Spiral trajectories, because of the properties of the latter
sampling (close to uniform). If apodization is used, the dif-
ferent correlation shapes look alike as well, although the
correlation with the central pixel is higher in general.

Gridding creates high values of noise variance at certain
points in the object domain, because of the division by the
kernel in the final stage. The same can be claimed about re-
construction errors of the image, even in the noiseless case,
when a noncircular distance is used.
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Figure 2: Correlation coefficient absolute value between the
central pixel and the rest of the image (PR sampling).
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Figure 3: Correlation coefficient absolute value between one
corner and the rest of the image (PR sampling).
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Figure 4: Correlation coefficient absolute value between the
central pixel and one line of the image.
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Figure 5: Correlation coefficient absolute value between the
central pixel and the image, with apodization function used.
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