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ABSTRACT

We present a new framework for combining maximum likeli-
hood (ML) stereo-motion fusion with adaptive iterated ex-
tended Kalman filtering (IEKF) for 3-D motion tracking.
The ML stereo-fusion step, with two stereo-pairs, gener-
ates observations of 3-D feature matches to be used by the
IEKF step. The IEKF step, in turn, computes updated 3-D
motion parameter estimates to be used by the ML stereo-
motion fusion step. The covariance of the observation noise
process is regulated by the value of the ML cost function
The proposed si-
multaneous approach is compared with performing the 3-D
feature correspondence estimation and the Kalman filtering
separately using simulated stereo imagery.

to address occlusion related problems.

1. INTRODUCTION

Several researchers have proposed extended Kalman fil-
tering (EKF) for tracking 3-D motion parameters from
long stereo sequences using 2-D or 3-D feature corre-
spondences as observations {1], [2], [3]. These formula-
tions treat the estimation of the 2-D or 3-D feature cor-
respondences from pairs of frames and tracking of the
3-D motion parameters more-or-less separately. Sta-
tistical data association techniques {5] or deterministic
stereo-motion fusion using dynamic programming [6]
have been used in the literature to estimate 3-D fea-
ture matches. -However feature matching is itself an
ill-posed problem, and without some stronger regular-
ization constraints erroneous matches may be found,
resulting in the divergence of the EKF. To this effect, in
this paper we propose a simultaneous framework which
combines the maximum likelihood (ML) estimation of
3-D feature correspondences with extended Kalman fil-
tering for 3-D motion tracking.

The ML correspondence estimation algorithm im-
poses consistency of the estimated feature matches with
the projected 3-D motion parameters obtained from the
EKF. However, unlike the previous approaches where
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the feature matching step is initialized by the predicted

" estimate from the EKF, the new ML approach imposes

this consistency constraint as part of the cost function.
At each time instant, several iterations of the ML and
the EKF algorithms are interleaved such that the EKF
makes use of the feature correspondences computed by
the ML step, and the ML step uses the 3-D motion pa-
rameters updated by the EKF. That is, we have an it-
erated EKF (IEKF) which uses improved observations
at each iteration as well as an improved linearization.
The algorithm advances to the next time sample when
the ML cost function can no longer be reduced. In sec-
tion II, we discuss the stereo imaging geometry and the
motion kinematics. In Section ITI, the ML step of the
algorithm is introduced. The formulation of an adap-
tive EKF, where the variances of the observation noise
are adjusted by the value of the ML cost function to
address occlusion related problems, is discussed in Sec-
tion IV. In Section V, we compare the results of the
combined algorithm with those obtained by treating
the two-steps separately.

2. IMAGING AND MOTION MODELS

Imaging Model: Fig. 1 shows a 3-D world coordinate
system Cw and two camera coordinate systems Cp
and Cgr that are fixed on the left and right cameras,
respectively, with their z-axes pointing along the op-
tical axis of the cameras. Let fi = f, = f denote
the focal length of both cameras. Consider two other
coordinate systems Cgo, the object coordinate system,
whose origin P coincides with the center of rotation
(that is unknown), and Cgs, the structure coordinate
system, whose origin is located at a known point on
the object. It is assumed that Cg and Co are related
by a translation d.

Let a point P;(¢) (Xi(t),Yi(t), Z:(t)) in the
world coordinate system Cw be represented as

P, (1) = (Xi,(t),Y;,(t), Z:, (1)) in Cp and Py (1) =
(X;,(8),Y5,(t), Z;,(t)) in Cr, respectively. Then,
P (t) = R.Pi(t) + T, (1)
P, (t) = RiPi(t) + Ty, (2)

where R, and R, represent the rotation matrices, and
T, and T, denote the translation vectors indicating the
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Figure 1: Geometry of stereo imaging

relative positions of Cgr and Cp with respect to Cw,
respectively. Combining equations (1) and (2), we have

P, (t) = RR'Pi (t)-RiR;'T,+T,
MP;.(t) + B, (3)
where M and B are known as camera calibration ma-

trices. Then, the perspective projection of the point P;
into the left and right image planes can be expressed

as
e R

respectively. Substituting (4) into (3), we have

. zi (t) . Ti, (t)
Zo(® | | = 2 .

Given the horizontal disparity, dg,(t) = z:,(t) — :, (1),
and the vertical disparity, dy;(t) = %,(t) — i, (t), we
can find the 3-D world coordinates of the corresponding
object point using (1)-(5).

Motion model: We use the motion model of Young
and Chellappa [4] in our formulations. The transla-
tional component of motion is represented by a con-
stant acceleration model given by

+B. (5

Po(tk+1) = Po(te) + (tks1 — te)v(te) + %(tkﬂ —te)*a(te),

V(tet1) = V(te) + (o1 — te)a(tr),
a(tk+1) = a(tk), (6)
where v(tx) =  (vz(te),vy(te),v2(tx)) and
a(ty) = (az(tx), ay(t), a:(tx)) denote the translational
velocity and acceleration vectors, respectively. The ro-
tational component of motion will be represented by

a quaternion q(te) = (41(t), ga(t), gs(tx), ga(t)) un-
der the assumption of a constant precession model. It
has been shown that the temporal dynamics of the
unit quaternion can be expressed in closed form as
a function of w and p, where w = (wg,wy,w,) and
P = (pz,Py,P:) denote the angular velocity and pre-
cession vectors, respectively [4].

3. ML STEREO-MOTION FUSION

In this section, we present the ML feature correspon-
dence estimation step of the simultaneous algorithm.
Let

(I (te41), IR (tk41), Lo (i) e, (25), e, (te), ur (),
ur, (tx), da(te), dy (), Ir(ts)) )

denote the conditional probability distribution (pdf)
of Ir(tk+1), Ir(tx+1), the left and right images at time
tiy1, and IL(¢), left image at time #, given wy, (1),
w, (te), ur, (t&),ur, (tx), vectors formed by lexicographic
ordering of the components of the vertical and horizon-
tal motion vectors between the left image pairs, and the
right image pairs, respectively; d.(¢x) and dy(tz), lex-
icographic ordering of horizontal and vertical disparity
vectors at time t; at all feature points; and Ig(¢x) the
right image at time ¢tx. The ML estimates of the 2-D
motion and disparity vectors are those that maximize
the conditional pdf (7).
The conditional probability distribution (7) provides
a measure of how well the present motion and disparity
estimates conform with the observed frames Ip(tr+1),
Ir(tk+1), IL(tx) given the frame Ig(tx). In the follow-
ing, it is modeled by a Gibbsian distribution, given by

(L (tk+1), IR(Bg1), T () |, (), way (25),
Ur, (tk)’ury(tk)’ d-’t(tk)vdy(t")vlﬁ(tk)) =
%ezp(—U(IL(tk+1)yIR(tk+1),IL(tk)|ul:(tk)r
uly(tk)vufr (t"))ury(tk)’dl‘(tk))dy(tk):Iﬂ(tk))v
where Z is a constant, and U{(.) is given by

U(To(tks1)s Tr(tr41), Lo (ti)iue, (2e), uiy, (2x),
ur, (tk), ur, (t), dz(ts), dy(tx), Ir(tx)) =

N

}:[alel(i) + a2€2(5) + azes(i) + asea(s)], (8)

1=1

N is the number of feature points, and
a@= Y |(m+ds(m,n),n+dy(m,n);te)~
(m,n)EN;

Ir(m,n;te)|%,

e2(i) = Z |IL(my,nL; ths1) — IR(m,n;tk)|2,
(m,n)EN;
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es(i) = Z [Tr(m + uz(m,n),n + uy(m, n); trxs1)—
(m,n)eEN;

Ir(m,n; tk)lz,

a@= D [llur(m,n;te) = de(m,n;te)| P+

(m,n)eEN;

|lai(m, n; tx) — Gi(m, n; tk)llz]

Here, N; denotes a neighborhood of the feature ¢,
(m’,n) refers to the coordinates in the left image at
time £x41 that corresponds to (m,n) in the right im-
age at time t;, and @,(m,n;t;) and G(m,n;t;) are
the projected motion vectors at pixel (m,n) at time t;
obtained as described in the following algorithm. Ob-
serve that the last term in the potential function (8)
enforces consistency of the correspondence estimates
with the projected 3-D motion [7].

Algorithm: The maximization of (7) is pursued in
the following manner:

1. Select N feature points in the initial frame t;.
Initialize the disparity vectors d.(¢¢) and dy(¢o),
and the motion vectors u;_(to), u, (to), u,, (o),
u,, (to) using a block correlation method between
the respective frames.

Find the 3-D coordinates of each feature point
P;(to) using (1)-(5). Set k = 0.

2. Find the 3-D coordinates of each feature point
Pi(tk+1) given uy, (te), w, (t), ur (t), ur, (i)
using (1)-(5).

3. Given the 3-D point matches P;(t;) and P;(¢x41)
as observables, estimate the 3-D motion parame-
ters q(tx), w(tx) and v(tz) using EKF (see
Section 4).

4. Find the projected motion vectors a,_(tx), ., (tx),
U (tx) and @, (tx) as follows: Apply the 3-D
motion parameters R and T to P;(tx) to find
lag(tk+1). Project 15,-(tk+1) into the left and right
image planes, and take the difference between the
respective image points at time ;.

5. Update the 2-D motion and disparity vectors by
a gradient descent algorithm to minimize

N
Cost(tz) = Z Cost; (tx) (9)
i=1

where

Costi(tx) = U(Ir(tr+1), Ir(tha1), TL(te)lue, (&), e, (te),
urz(tk)’u"y(tk)rdz(tk)’dy(tk))' (10)

is evaluated on a local window centered about
the feature point 3.

We iterate through steps 2-5 at time t; until con-
vergence.

6. Increment k by 1 and set wy, (tx), w, (t&), ur, (tx),
u,, (tx) to the predicted values from the EKF and
go to Step 2.

4. EXTENDED ADAPTIVE KALMAN
FILTERING

Due to the nonlinearities in the state and the mea-
surement models caused by the relationship between
the quaternion representation and the rotation param-
eters, we use an extended Kalman filter (EKF) method
to estimate the 3-D motion parameters as proposed by
Young and Chellappa [4].

The observations of the EKF are the 3-D feature .
correspondences P;(tx) and P;(¢z41) found by the ML
step in Section 3. Given the imaging and motion model
described in Section 2, the state transition and the mea-
surement equations for the Kalman filter are

State equation: s(ti,,) = f(s(t}),w(t}), p(t})),
where

s(ts) = [ Po(te) v(tx) a(ts) d(tx) q(te) w(te) pts) |7

and
Measurement equation:

Pi(tx) = Po(tx) + R [ a(tk) ] (Ps,(tx) — d) + n(t)

where R is the rotation matrix defined with respect to
the center of rotation, P,(#;) is the 3-D coordinates of
the feature point with respect to Cg, and n(tz) is the
measurement noise which is assumed to be zero mean
with covariance matrix N(Zy).

The covariance matrix N(¢) can be adaptively mod-
ified to handle problems with occlusion. We adjust the
diagonal elements of the covariance matrix by the ML
cost function given by (10) as

of(tx) 0O . . 0
0 a%(t) .o 0
N(tk) - . . BN . (11)
o
where
o2 (tx) = 03 (tx) + plt)Costi(ts), (12)

p(tr) is a scalar weight, and ¢3(¢) is the nominal noise
variance. When a feature point i is occluded, then a
correspondence can not be found for this point which
causes Cost;(tx), hence o?(tx) to be large. This adap-
tivity decreases the effect of occlusion in the tracking
performance of the EKF.
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in cm. Feature 1 | Feature 2
True depth 100.00 102.47

Block corr. 98.70 102.08
Dyn. prog. 99.32 102.31
ML 99.46 102.41

Table 1: Feature estimation performance.

5. RESULTS

In this section, we compare i) the feature matching
performance of the ML step with a deterministic algo-
rithm [6], ii) the tracking performance of the adaptive
versus non-adaptive ML-EKF algorithm, and iii) the
tracking performance of the adaptive EKF with fea-
ture correspondences obtained by the ML step versus
by the deterministic algorithm. Results are provided
on a simulated stereo image sequence consisting of 40
frames. The consecutive frames are generated by ro-
tating a texture mapped rectangular block by the 3-D
rotation parameters, w, = —1, w, = —1, w; = —3, and
the 3-D translation parameters T, = —0.5, T, = 0.5
and T; = 0.5 where the rotations are in degrees and
the translations are in centimeters. Occlusion is sim-
ulated by moving another rectangular block over the
image. We select 8 feature points on the right image
at time ;.

To evaluate the feature matching performance, we
have computed the depth of two feature points using
three different algorithms. The results shown in Table 1
indicate that the ML algorithm outperforms both of the
deterministic techniques. Note that this experiment
indeed evaluates only disparity estimates.

In order to provide a comparison of the tracking
performance of the ML-EKF algorithm, we have plot-
ted the magnitude of error in the rotational and trans-
lational velocity vectors over 40 frames in Figs. 2 and 3,
respectively. In the figures, “ML-2 view” refers to esti-
mating the 3-D motion parameters directly from the 2-
D point matches by a weighted least squares approach
on a frame-by-frame basis. In “non-adaptive EKF” the
observation noise covariance matrix is fixed for all ¢;.
“Dyn-EKF” refers to running the EKF with the fea-
ture correspondences obtained from the deterministic
algorithm. The results demonstrate the superior per-
formance of the ML-EKF algorithm.

6. CONCLUSION

We presented a new formulation where feature match-
ing and 3-D motion tracking are performed in a single
iterative framework. The algorithm alternates between
an ML step and IEKF step at each iteration until the
ML cost function can no longer be reduced. Results
prove superior to performing each step separately.

2280

no
~—— now-adaptive ML-EKF
~= == adwpiive ML-EXF
— —< adaptive dym-EKF
=== ML-2 view
60 | i i
i !
" '
A ity i
ot iy [ IREY i
- y 0 it PR i
[ it ot i
AN i { [
Pt ] Py
[ ) [ ] ] i H
Yol HE T N i Py
[T S T A A
zobti il VoL
wou o oyyho g 1 Ny
oy 1.0 * W 1
1) 4 v 3 N 1y
{ \
’ A
P
Q.0
0.0 10.0 20.0 30.0 40.0

Figure 2: Error in rotation parameters
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