INTERPOLATIVE CODING OF IMAGE SEQUENCES
USING TEMPORAL LINKING OF MOTION-BASED SEGMENTATION

Laurent Bonnaud *

Claude Labit !

Janusz Konrad ?

! IRISA/INRIA-Rennes, Campus de Beaulieu, F-35042 Rennes Cédex, France, E-mail: <name>@irisa.fr
2 INRS-Telecom, 16 Place du commerce, Verdun, Québec, Canada, H3E 1H6, E-mail: konrad@inrs-telecom.uquebec.ca

ABSTRACT

This paper presents a new temporal interpolation algorithm
based on segmentation of images into polygonal regions un-
dergoing affine motion. The goal of this work is to im-
prove upon the block-based interpolation used in MPEG
(B-frames). In the first part, we briefly describe the re-
gion-based framework and the temporal linking algorithm
that jointly provide the segmentation and motion param-
eters. In the second part, we present various applications
of the proposed algorithm to temporal interpolative predic-
tion. We examine one of these schemes in detail, including
the special processing of occlusion areas. Results are illus-
trated by predicted images and using the MSE criterion we
compare their quality with other schemes.

1. INTRODUCTION

In order to exploit high temporal redundancy in image se-
quences, usually image prediction based on motion com-
pensation is used. Motion-compensated prediction can be
achieved using only a previous image (P-frames in MPEG)
or both previous and following images (B-frames). In MPEG
standard, a block-oriented translational motion model is
used: the same motion vector is applied to all pixels in a
16 x 16 block. This fixed partition cannot handle areas of
complex motion or occlusion boundaries, and creates visu-
ally disturbing blocking artefacts in the reconstructed image
at low bit rates. Furthermore, the coding of motion vectors
is inefficient since motion of large regions could be described
with only a few motion parameters {in case of global pan
or zoom, for instance). To achieve lower bit rates, region-
oriented motion compensation has been introduced [1, 2].
Those schemes, however, use the previous image only, disal-
lowing prediction of uncovered areas. Our new interpolation
scheme is able to predict uncovered areas using the follow-
ing image and is also capable of ensuring better prediction
in other areas.

2. TEMPORAL LINKING OF THE
SEGMENTATION

In this study, images are segmented into homogeneous re-
gions. Regions have an arbitrary polygonal shape, and form
a partition of the image. The homogeneity criterion is based
on a 4-parameter simplified affine model or a 6-parameter
complete affine model. The notation e%,:,._.tj describes a

motion descriptor from image I:; to image I:; for the re-
gion R with a ¥ exponent if t; < ¢; (forward direction) or

a ~ exponent if ¢; < t; (backward direction). For each point
p € Ry, the displacement vector from image I:; to image I,
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is defined as ci;i‘,_,,j (p) (see figure 2).
In the simplified affine case, Gﬁﬁyti_,tj = [tz,ty,k, 0] and

P _{ ta k -8 Tp — Ty
dt‘_’tj(p)—(ty)+[0 k ](yp_yr)
where 7 is a reference point. It is defined as the center of

gravity of the region Ry, if it not being occluded.
In the affine case, ei,t.-—d,- = [tz, ty,a,b,c,d] and

~ _{ ta a b Tp — Tr
dtg—'tj(p)—(ty)_'-[c d](y:—yr)'

When descriptor ©% needs to be calculated from descrip-
tor ©~ (and conversely), inverse geometric transformation
is computed by inversion of the 2 X 2 matrix.

As the estimation of motion parameters requires a good
initialization and thus can be biased, a long-term filtering
of motion parameters (based on temporal recursive Kalman
filtering) has been implemented.

The temporal linking algorithm consists of 3 steps: for
image I

e Motion parameters @;’;,t_ s¢+—¢ and shape of regions are
predicted with a Kalman filter (6t is the period of image
acquisition). Each motion parameter is predicted inde-
pendently according to a constant acceleration model
as in [3, 4]

e Predicted spatio-temporal segmentation is adjusted
with respect to actual edges in the image I; using a
snake approach: the minimized energy is the sum of
—||§It|| along the polygonal region boundaries. Mo-
tion of the snake is constrained to be affine and the
minimization is achieved using a gradient descent on
motion parameters [5].

s Motion parameters ©3 , ., ;, of each region are esti-
mated using a region matching: the MSE is minimized
by a gradient descent. As motion vectors are non-
integer, MSE is computed with spatial bicubic interpo-
lation [6] at inter-pixel positions. The gradient based
minimization algorithm needs image derivatives ; to
be consistent, they are computed with the same bicu-
bic interpolation [7]. Four different motion descriptors
are selected as an initialization and parameters giving
the lowest MSE are chosen a posteriori. This choice is
necessary to avoid a possible divergence of the Kalman
filter. The four initial parameter sets are the null de-
scriptor, parameters estimated for the same region in
the previous image, filtered parameters and predicted
parameters.
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Figure 2. Forward and backward motion vectors and descriptors.

Figure 1. (a) Initialization of segmentation for the first frame

of the sequence. (b) Segmentation of the last frame after
processing the whole sequence (19 images).

The result of the segmentation process is shown in Fig-
ure 1. More details on the algonthm and on the experimen-
tal results can be found in'[8].

3. REGION-BASED BIDIRECTIONAL
MOTION COMPENSATION

The segmentation algorithmn processes all images between
two consecutive I- or P-frames called reference images
(I¢1 and Iy,). It provides motion descriptors of the form

R t+5t—t Detween successive images, too. Then, the seg-
mentation map and motion parameters are used to inter-
polate the intermediate B-frames. In order to predict the
B-frames (I:)s, <t<t,, the decoder needs the segmentations
of the three images and for each region R the two mo-
tion descriptors from the B-frame to the reference images,
namely ©7 ,_, and e ,t—t,- The coder transmits the seg-
mentation of I+, and I:, to the decoder, as well as O 2oty
(used if I, is a P-frame). This descriptor is computed using
motion estimator initialized with parameters of the affine
transformation which is a combination of affine transfor-
mations (@7_z,t+6t—~t)t1$t<¢2'

There is a trade-off between the quantity of motion and
segmentation information transmitted to the decoder and
the quality of the predicted B-frame. Here are several pos-
sibilities:

e bidirectional motion compensation. The coder

transmits the segmentation of I;, as well as O3 bty
+
and O3 St—ty”

e bidirectional segmentation fredlctxon. The coder
transmits only ©x ,_, and ©% , . . The decoder re-

constructs the segmentation of I by applying (-).R o
to the boundaries of R¢, and ©% ,,_,, to the bound-
aries of R.,.

e pure interpolation. The coder transmits no segmen-
tation or motion information. The decoder interpolates
O% i, and o1 g, from OF jta—ty and previously
transmitted motion descriptors given a suitable motion
model (constant velocity or acceleration for example).
It reconstructs the segmentation of I; as above, too.

Only the first scheme has been implemented and tested,
assuming a lossless transmission of segmentation and mo-
tion parameters.

The interpolative prediction of the B-frame [y itself is
done for pixel p: € R: as follows

Pty = Pe 4+ do_s, (Pe), Pr, = pe + di.,, (pr)

it(Pt) = aply, (pe,) + Bple, (pt;)

with spatial bicubic interpolation [6, 7] used at inter-pixel
positions in I, and I;,.

In order to handle occlusions, a distinction is made be-
tween “normal” areas and areas covered or uncovered by
the movement of another region. The decision is taken
on a pixel per pixel basis according to the rules in Ta-
ble 1. Figure 3 illustrates the different types of areas for
non-overlapping motion, but everything still holds for over-
lapping motion.

type of area

and (ap, 8p) Pty € Ry, Pty € Re,
R “normal” area covered area
Pu € Ru (,8) (1,0)
uncovered area spatial prediction
Pt & Re (0,1) (0,0)

Table 1. Classification of different types of areas and associ-
ated interpolation coefficients.
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Figure 3. Interpolation of “normal” areas and of areas covered and uncovered by the movement of the region R.

In the “normal” case, the interpolation is simply a linear
combination of the corresponding points in the reference
images with fixed coeflicients o and .

e If both motions are of the same quality and if there
is no illumination variation, the simplest coefficients
(o, B) = (0.5,0.5) can be chosen.

» If there is an illumination variation, a model which is

tz—t t—1 )

tz—t1 ta—t1’

e Coefficients (o, 3) can also be estimated at the same
time as motion descriptors as in [9]. In this case, they
have to be transmitted, too.

linear in time can be used: (o, ) = (

Covered and uncovered pixels are predicted by their in-
tensity in the reference image where they appear.

The “singular” case (ap, 3p) = (0, 0) happens only when p
has no corresponding pixel in the reference images. Thus,
temporal interpolation is not possible. Instead, spatial in-
terpolation based on median filtering with a growing win-
dow is used. In order to ensure temporal coherence between
successive spatial interpolations, median filtering takes into
account only those pixels that belong to the same region R
as p.

4. EXPERIMENTAL RESULTS AND
CONCLUSIONS

We tested our region-based bidirectional prediction on a
synthetic image sequence with three interpolated images
between two I- or P-frames. We tried both fixed coeffi-
cients (ap,8p) = (0.5,0.5) and time-linear coefficients, and
made a comparison with both region-based monodirectional
prediction and block-matching bidirectional prediction.

A comparison using the mean square error defined as

MSE(R:) = Z= > (1) - L))

PER:

is shown in Figure 4. Bidirectionally interpolated images
(FC-B-RB-MC) have a significantly lower MSE in compari-
son with images computed using previous-image prediction
(M-RB-MC); 20-30 instead of 40-50. The energy (or in-
novation in uncovered areas) is concentrated in the next P-
frame whose MSE is therefore higher. With such a low MSE
(and good visual quality, see next paragraph), a hybrid
coder could transmit prediction errors only for P-frames,
thus achieving a coding gain. For B-frames our region-
based prediction does as well as block-matching whereas for
P-frames it is worse. This can be explained by the fact that
our algorithm detects uncovered areas and does nothing to

predict them (they stay black). The same kind of spatial
interpolation as for our bidirectional prediction could be
used, but the problem is more difficult because uncovered
areas are larger (45t separate a P-frame and the image it is
predicted from). For our particular sequence where motion
estimates are correct, fixed coefficients give about the same
result as coeflicients that vary linearly over time.

Examples of interpolated images are shown in Figure 5.
As can be seen, our algorithm has a drawback in the way it
handles edges. Images often have somewhat blurred edges,
because of prefiltering before sampling in real images and
because of interpolation in synthetic images. Our segmen-
tation does not take this into account and region bound-
aries cut the image abruptly. This explains why we can
see “ghost edges” in interpolated images (for instance the
background has a remaining edge of the dark rectangle). To
correct this, we erode the segmentation mask of regions in
the reference frames before we test if p,, or p:, belong to
them. Therefore, the transition zone between the grey levels
of regions across a boundary is not used in the interpolation.
This causes more “singular” cases where (ap,05) = (0,0),
but as long as the erosion is not too strong, the spatial pre-
diction can handle those pixels. The result does not show
the same blocking artefacts as block-matching.

We have described a new region-based interpolation
scheme which is able to predict uncovered areas. Further-
more, predicted images have a significantly lower MSE than
with a mono-directional prediction and are visually better
than with block-matching. Work is currently in progress to
test this interpolation scheme on real image sequences.
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Figure 4. MSE for motion-compensated interpolation obtained with: (a) Monodirectional Region-Based Motion Compensation. (b)
Fixed-Coefficients Bidirectional Region-Based MC. (c) Fixed-Coefficients Bidirectional Block-Matching MC. (d) Linear-Coefficients
Bidirectional Region-Based MC. Images number 2, 6, 10, 14, 18 and 19 are P-frames : other images are B-frames.

(<)

Figure 5. (a) Image number 8. (b) Region based interpolation.
(c) Interpolated image with corrected edges. (d) Interpolated

image with block-matching.
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