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ABSTRACT

We have formulated and evaluated a binary hypothes:s test for
the detection of uncovered background pixels between image
frames in a noisy image sequence where we assume additive,
white, gaussian noise. We have extended the binary hypothesis
test to a 3-ary hypothesis test to allow for the segmentation of
the image into three regions: uncovered background, stationary
and moving pixels. We have evaluated both the binary and 3-
ary hypothesis tests using a single measurement and multiple
measurements for classifying each pixel on synthetic images, and
we have evaluated the 3-ary hypothesis test on the Trevor image
sequence.

PROBLEM FORMULATION

The detection of uncovered background pixels and moving pixels
in image sequences is an essential part of uncovered background
prediction and motion compensation for sequence coding. Many
such schemes use change detection to determine uncovered
background and moving portions of the image [1]. Change
detection, however, does not adequately detect such regions in
noisy images. In this work, we formulate and evaluate a binary
hypothesis test for the detection of uncovered background pixels
in noisy image sequences. We then extend the binary hypothesis
test to a 3-ary hypothesis test to distinguish between stationary,
moving and uncovered background pixels.

We begin by writing the intensity of the previous frame as

2,(®) = sk) + w,(®) , o)

where k denotes the spatial location of the pixel in the image
frame, z,(k) and s(k) are the noisy and noise-free intensities,
respectively, and w (k) is zero-mean, additive, white, gaussian
noise. We can then model the noise-free intensity at each pixel
in the current frame as a displaced value from the previous
frame or as an uncovered background value, which leads to

s(k-d(k)) + wy(k),
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for the noisy intensity of the current frame, where d(k) is a
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nonuniform displacement vector, b(k) is the intensity of the
scene background, w,(k) is zero-mean, additive, white,
gaussian noise and T, is the region of uncovered background.
Assuming that d(k) is small enough such that the first-order
approximation of s(k-d(k)) is valid and defining

ER) = (0 - 7,(R) , ®)
and
wik) = wy(k) - w,b) , @
we obtain
| -gTwdw + wik), ker, H

7 b - @ + W, k€T, H, .

where g(k) is the intensity gradient vector at k, and ” denotes
matrix transposition. H; and H, indicate the binary
hypotheses, where H, indicates a correspondence to a
stationary (d(k)=0) or moving (d(k)#0) pixel from the
previous frame, and H,, corresponds to a pixel belonging to an
uncovered background region. Using (5) we form the
likelihood ratio for the binary hypothesis test [2]
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where pEMH,) and pER)IH,) are the conditional
probability density functions (pdf’s) of &(k) given H, and Hy,
respectively, and 7 is a threshold value which depends on the
a priori probabilities, P, and P, of H, and H; occurring,
respectively. When we use a single measurement, (k) is the
measurement we use to classify a pixel at location k. When
we use multiple measurements, we use the measurements at
the eight nearest neighbors of k in addition to §(k) (i.e., 2 3x3
neighborhood around k) to make the decision.

Following [3] and assuming that b(k) and s(k) are statistically
independent. we write (6) as
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where

qk) = bk) - sk) , ®

p(q(k)) is the pdf of q(k), € is the support of q(k} and . K,
m, C and I(§(k)) are as in [3].

We extend (6) to a 3-ary hypothesis test to separate the non-
background pixels into moving and stationary pixels by writing
(2) as

s(k-d(k)) + w,(k), keT,
@) = { s « w®, ker, O
bk) + wy(k), kel,,

where I, ', and T, are the regions of stationary, moving and
uncovered background pixels, respectively. Defining &(k) and
w(k) as in the binary case, the three hypotheses become

-gT(®)dk) + w(k), k €T, :H,
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leading to the following two likelihood ratios
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We use the 3-ary hypothesis test as given in [2]. The test

depends on P, the a priori probability of a pixel belonging to
class i, and C,,, the cost of deciding that a pixel belongs to class
m when the pixel actually belongs to class n. Note that A,[E(k)]
is the inverse of the likelihood ratio used in [3], and A,[E(k)] is
the inverse of the likelihood ratio developed for the binary

hypothesis case above.
EVALUATION

To evaluate the binary and 3-ary hypothesis tests, we generated
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several test image sequences consisting of several moving
objects and different background scenes. We used both
hypothesis tests on the images at several signal-to-noise ratios
(SNR’s) using a single measurement for classifying each pixel
and multiple measurements for classifying each pixel. We
define SNR as

12
SNR = 10log,,(ZX6128¢ Mmage varance, ;p U2
notse varignce

Since the noise samples are statistically independent, for
multiple measurements, (k) for i=1,...,9, the joint pdf is the
product of the individual pdf’s. Thus, the likelihood ratios for
the multiple-measurement experiments are the products of the
likelihood ratios from the single-measurement experiments.

For the binary hypothesis test, we generated receiver
operating characteristics (ROC’s) at several SNR’s. We
compared the ROC’s for single measurements to those for
multiple measurements. For the 3-ary hypothesis test, we
formed the confusion matrix for the 20 dB SNR test case.
This matrix shows the percentage of pixels of a given class
that were detected in each of the three classes. We formed
confusion matrices for several different cost matrices, where
we define a cost matrix as a matrix, C, with entry m, n equal
to C,,,, where m=0,1,2 and n=0,1,2.

In addition to evaluating the 3-ary hypothesis test on synthetic
images, we evaluated it on the Trevor image sequence. We
visually inspected the resulting image segmentation as our
performance criterion.

All of the above tests require knowledge of the pdf of the
difference between background and object intensity, p(q(k)),
in the region of uncovered background. We determine this
pdf by convolving the histogram of the background with the
Jflipped histogram of the object and normalizing to make the
result a valid pdf. Given that a likely application of this
technique for image sequence coding is video
teleconferencing, we made the following assumptions. If the
application is video teleconferencing, knowledge of the
background is readily available. The background is the scene
before the respective conference attendee enters the staging
area. We therefore assume that we have knowledge of the
intensity distribution of the background. We also assume that
the moving object is likely to be a person, and again we have
statistical knowledge of the object.

For the tests involving the Trevor sequence, we interactively
extracted the background region from a noisy frame of the
sequence different from the present or previous frame and
used that region to obtain the necessary statistics. In some
experiments, we used a frame of the sequence that was not
our present or previous frame to extract the object for the
object statistics. In other experiments, we used a frame from
the Miss America sequence, and interactively extracted the
person to use for the object statistics. There were no visual



distinctions in the segmentations resulting from using Miss
America or Trevor for the intensity histogram of the object.

Another approach, given the same video teleconferencing
application, is to take the first image frame and consider the
middle one third as the object and the two outer thirds as the
background in order to obtain the required histograms. This
assumption is reasonable since the person is most likely to be
centered in the image frame.

RESULTS

In Figures 1-5 and Table 1, we summarize the results of the
experiments done on the synthetic test images. Figure 1 shows
the previous and present frames of one of the test image
sequences at an SNR of 20 dB. Figure 2 shows a segmentation
of the present frame (I, - black, I';, - white, I, - gray) resulting
from the 3-ary hypothesis test using single measurements for
pixel classification and two different cost matrices, C, and C,,
where

011 011
c,=l1to1l c¢=909 . a3
110 110

From this figure, we see that if we make it more costly to
misclassify a moving or uncovered background pixel as a
stationary pixel, we increase the probability of detection of
uncovered background and moving pixels, but we also
misclassify many of the stationary pixels.

Figure 3 illustrates the effectiveness of multiple measurements
in the low SNR situation. The figure shows a segmentation of
a 10 dB image using a single measurement for pixel
classification and multiple measurements for pixel classification.
Figure 4 is the true segmentation for this test sequence. In
Figure 5a, we show the ROC’s for several SNR’s and single
measurements, and in Figure 5b, we compare the ROC’s at 10
dB for single and multiple measurements. The ROC’s in Figure
5 indicate the increased detection performance gained by using
multiple measurements in low SNR images. Table 1 is the
confusion matrix resulting from the 3-ary hypothesis test on the
20 dB test sequence. From this table, we see the effect of the
cost matrix on the performance of the hypothesis test.

Figures 6-8 show the results of the 3-ary hypothesis test using
the Trevor image sequence. Figure 6 shows the noisy (20 dB)
present and previous frames. In Figures 7 and 8, we show
segmentations of the 20 dB sequence and 5 dB sequence
resulting from single and multiple measurements for pixel
classification, respectively using C=C,. These figures also
demonstrate the advantage of using multiple measurements in
low SNR sequences. The segmentations of the Trevor sequence
are good with the exception that the tie is consistently
misclassified. This occurs because the histogram of the tie is
similar to the histogram of the background.
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Previous Frame Present Frame

Figure 1: Test image sequence at SNR=20 dB

Figure 2: Segmentation of 20 dB image for different C
(T, - black, I', - white, I', - gray) left: C=C, right: C=C,

Figure 3: Segmentation of 10 dB image using C,
(T, - black, I, - white, I, - gray)
left: single measurements right: multiple measurements
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(T, - black, I, - white, T}, - gray)

Figure 4: True segmentation
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Figure 5a: ROC single measurements

Present Frame
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Figure 8: Segmentation from multiple measurements using
C, (I, - black, I',, - white, T - gray) left: 20 dB right: 5

TRUE REGION
DETECTED
REGION moving stationary uncovered
background
moving 84 /89 03/6 6/17
stationary 8173 99/ 89 13/4
uncovered 8/8 03/5 81/89
background

Table 1. Confusion matrix, in percentage, for 3-ary hypothesis
test (single measurements, SNR=20 dB, C, / C,)
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Figure 5b: ROC, single measurements and
multiple measurements for SNR=10 dB

Figure 7: Segmentation from single measurements using C,
(T - black, I', - white, I, - gray) left: 20 dB right: 5 dB



