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Abstract

In this paper we consider a method for image compression based on
frequency and spatially adaptive wavelet packets. We present a
new fast directed acyclic graph (DAG) structured decomposition,
with both spatial segmentation and orthogonal frequency branching
from each node. Whereas traditional wavelet packet decomposition
adapts to a global frequency distribution, this technique finds the
best joint spatial segmentation and local frequency basis. The
algorithm is derived from the fast double tree algorithm proposed
by Herley, et. al., for 1-D signals [1], with an extension to 2-D and
modification to include spatial segmentation of frequency nodes.
By collecting redundant nodes in this full adaptive tree, we have
derived a directed acyclic graph (DAG) structure which contains
the same number of nodes as the double tree, but includes new
connections between nodes. We present the adaptive wavelet
packet DAG algorithm and examine image compression
performance on test images.

1. INTRODUCTION

By including spatial segmentations in the search for the most
efficient basis for representation, image decomposition via
spatially adaptive wavelet packets adapts to image non-sta-
tionarity as well as local frequency content. Previously

[21[3], wavelet packets have been used to arbitrarily partition -

the image frequency plane to adapt to signal frequency char-
acteristics. However, the search for the best orthogonal
wavelet packet basis considers only a single unsegmented
signal space, and thus does not adapt to signal non-stationar-
ity. )

When fixed spatial decomposition is performed prior to fre-
quency decomposition, the effect of non-stationarity can
often be reduced. DCT, as used in JPEG, and other block-
based transforms use this approach. Alternatively, the fre-
quency bands themselves may be partitioned [4][5] and
coded separately using fixed spatial segmentations. How-
ever, these approaches do not find the best joint frequency
decomposition and spatial segmentation. We propose that
the frequency and spatially adaptive wavelet packet decom-
position do just this.

2. SPATIALLY ADAPTIVE TREE STRUCTURE

The adaptive decomposition may be easily organized into a
tree structure as indicated in Figure 2(a). Starting with the
full image at the root node, each subsequent node is decom-

2233

posed both spatially (S) and spectrally (F). The spatial
decomposition is carried out using a quad-tree split. Since
the spatial partitions do not overlap, this segmentation
allows the four children nodes to be further analyzed inde-
pendently. The frequency decomposition is performed using
a four channel quadrature mirror filter (QMF) bank. This
produces a library of wavelet packet bases which consist of
orthonormal functions that are easily constructible from a
single filter kernel [2]. An element of the wavelet packet
basis may be identified completely by its tree position and
original filter kernel. This characteristic has made wavelet
packets extremely tractable for image compression.

The extension of wavelet packets to include optimization
across spatial segments was proposed in [1]. There, a double
tree was formulated such that the best wavelet packet basis is
found for a hierarchy of binary segmentations of the signal,
then the optimum one is chosen. The overall search identi-
fies the most efficient joint spatial segmentations and corre-
sponding wavelet packet decompositions based on an
additive cost function. We extend this double tree, with
some modifications, to attain a more extensive best basis
search which will yield improved compression performance.

2.1 Rate-Distortion Criterion

In keeping with the goal of image compression, and as in [1],
we adopt a rate-distortion (R-D) framework. This two-sided
criterion is a more general case of one-sided criterion such as
entropy only [2], or distortion only. The operational R-D
characteristic is constructed at each node by sweeping
through a series quantization step sizes and measuring the
first order entropy (R) and mean square error (D). Uniform
quantizers are used for all nodes which contain the d.c. fre-
quency component, while a deadzone quantizer centered at
zero is used for all other nodes. The search for best basis
then combines the search for minimum cost expansion with
minimum (R-D) operating costs at nodes. The optimization
uses adaptive pruning of the tree based on the Lagrangian
cost function, J(A) = D +AR. In general, selection of opti-
mal basis and R-D operating points (quantizers) at each node
will be a function of the signal characteristics, original filter
kernel, and the target rate for compression. A detailed pre-
sentation of this technique can be found in [6].
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FIGURE 1. (a) Adaptive double tree proposed by Herley, et. al. [1], applied here for images. Notice that a separate wavelet
packet tree is generated for each spatial segmentation. (b) Symbolic representation of the double tree in (a), (c) Dual of double
tree, with spatial segmentation of frequency nodes. (d) Approximate commutativity of spatial and frequency decompositions;
notice that only arrangements of blocks in the bottom two images differ.

2.2 Double Tree

The double tree structure was proposed to find jointly the
best wavelet packet basis and signal segmentation [1].
Essentially, this corresponds to growing individual wavelet
packet trees for a hierarchy of segmentations of the signal.
This is illustrated for images in Figure 1(a). The symbolic
representation, which will be used in the remainder of this
paper, appears in Figure 1(b). The double tree algorithm was
applied to various 1-D signals in [1], and produced improved
results over pure wavelet packets. However, although the
double tree considers segmentations of the original signal in
the selection of the best basis, it does not evaluate the bene-
fits of segmenting the frequency (F) nodes of the wavelet
packet trees. In other words, a more complete tree than the
double tree can be generated.

2.3 Full Adaptive Tree

Circumstances may dictate that it is more efficient to split a
signal first based on frequency, then select which frequency
nodes to segment (split spatially), rather than first splitting
spatially followed by frequency. The double tree considers
the latter case in the optimization, but not the former. To
accommodate all combinations of frequency and spatial
splits, all nodes in the tree must be split both spatially and by
frequency. We call the tree with both splits at each node a
full adaptive tree. This tree is illustrated using symbolic
notation in Figure 2(a). The full adaptive tree can be con-
trasted to the double tree, which splits nodes spatially only if
no prior frequency splits were performed; compare
Figure 1(b) with Figure 2(a). The full adaptive tree com-
bines the double tree, Figure 1(a) with its dual, Figure 1(c).

FIGURE 2. (a) Full adaptive tree with frequency and spatial branching from each node. Letters indicate redundant nodes. (b)
Equivalent polynomial expansion. (c) Commutativity illustrated in Figure 1(b) allows the conversion of the full adaptive tree

into this directed acyclic graph. Note, in these symbolic representations, it appears as if all children of a parent node are further
spawned collectively using either frequency or spatial branching. In actual implementation, each child branches independently

of the other children. This gives the trees a depth into the page,

which is illustrated more completely in Figure 4.
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spatial wavelet double tree adaptive
JPEG wavelet | quad-tree packet double tree dual DAG
Spatial decomp. Fixed None Adaptive None Hierarchical Adaptive Adaptive
Freq. decomp. Fixed Fixed None Adaptive Adaptive Hierarchical Adaptive
# nodes: N D D ‘
w i . i
z.z . 1 1 -4
D = depth 88 3:-D+ .24 2 G+ D
i=0 i=0
0.1 bpp, PSNR = 22.7dB 23.8dB N/A 25.4 dB 25.4 dB 25.5dB 25.5dB
0.5 bpp, PSNR = 28.3dB 29.5dB 19.1 dB 32.7dB 32.7dB 32.9dB 33.0dB
1.0 bpp, PSNR = 33.1dB 34.6 dB 26.5dB 37.1dB 37.1dB 37.6dB 37.7dB
2.0 bpp, PSNR = 38.9dB 40.7 dB 34.7 dB 43.0dB 43.0dB 43.8dB 43.8 dB

TABLE 1. Comparison of several adaptive image compression algorithms using Barbara image.

2.4 Adaptive Directed Acyclic Graph

While the full adaptive tree offers a more complete decom-
position of the signal, the number of over-expansions of the
signal grows exponentially with tree depth. This is clearly
less favorable than the double tree which grows only linearly
with tree depth. Clearly with the full adaptive tree, the new
combinations come at considerable computational cost!
However, by looking more closely at the series of branchings
in the full adaptive tree, we can reduce the full adaptive tree
into an equivalent graph structure that is the same size as the
double tree.

As illustrated in Figure 1(c), the payoff comes from recog-
nizing the commutativity in the series of branchings in the
full adaptive tree. For example, for two step hybrid branch-
ing, we have FS = SF, and for three step hybrid branching,
SFF = FSF = FFS. In other words, if the order of operations
(S and F) is reversed, the equivalent nodes are generated. In
the two step case, for example, there are two paths leading to
each hybrid node. This implies that the double tree and it’s
dual have identical nodes, but with different connectivity.

When the full adaptive tree is modified accordingly to collect
the redundant nodes, a directed acyclic graph (DAG) struc-
ture is produced. The corresponding adaptive directed acy-
clic graph (ADAG) appears in Figure 2(c). Interestingly
enough, it has the same nodes as the double tree, but with a
rich variety of new connections between nodes. Now the
selection of best basis corresponds to selecting the best paths
through the ADAG. The Lagrangian method of joint best
basis selection and bit allocation used for the double tree,
and mentioned earlier, applies to the ADAG as well.
Figure 4(a) gives another look at the full adaptive tree and
the ADAG for depth = 2, with all children nodes included.

2.5 Compression Resulits

The double tree algorithm, its dual, and ADAG wavelet
packet compression were applied to several test images. The

results show a significant increase in performance over non-
adaptive methods, as indicated in Table 1. The ADAG and
dual double tree show improvement over the double tree.
Interestingly, the double tree most often arrives at the same
result as wavelet packets. The reason is that for images, it is
usually too expensive to sacrifice globally an iteration of
wavelet decomposition for a spatial segmentation. Spatial
segmentations, however are often chosen liberally in the
dual double tree and the ADAG, when the effect is isolated
to a sub-tree, where the trade-off is still beneficial.

The tabulated results are based on compression of the Bar-
bara image, using the Johnston filter QMF12a in the wavelet
packet filter banks [7]. The overhead cost for coding the tree
was also embedded in the optimization. Bits were added to
the rate (R) terms of the R-D points at each node as follows:
since 16 quantizers were evaluated at each node, 4 bits were
added to identify the optimum quantizer. To describe the
position of each node, 3-depth+4 additional bits were
added to each node, where depth is the distance from the
node to the root. Clearly the overhead becomes more signif-
icant as the number of nodes in the basis increases. By
including the overhead bits in the optimization, the algo-
rithm evaluates if the penalty of selecting nodes deeper in
the tree is worthwhile.

3. CONCLUSION

We have presented a new algorithm for image compression
using spatially and frequency adaptive wavelet packets.
This approach adapts jointly to the image spatial and fre-
quency distributions. We started by extending the double tree
algorithm to images. Then the double tree structure was
modified to include spatial segmentation of frequency bands,
to form a more complete tree. Following from the commuta-
tivity of hybrid series of branchings, the full adaptive tree
was then reduced into the adaptive wavelet packet directed
acyclic graph (ADAG). We tested both the double tree, its
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FIGURE 3. Compression of face image of Barbara at 0.25 bpp, (a) wavelet (24.9dB), (b) ADAG compression (27.2 dB).
Clockwise, (i) optimal basis, (ii) D-R curves for basis, X’s indicate optimal D-R points and slopes (rescaled), (iii) histograms, (iv)
reconstructed image. Spatial segmentations indicated with black borders, frequency decompositions with white borders.
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FIGURE 4, (a) Full Tree for depth = 2, showing branching from all children nodes; frequency children are numbered 0 - 3, and
spatial children are 4 - 7. After two generations, redundant nodes will have codes that are inverses, i.e., node 2-5 = node 5-2, (b)
after collecting redundant nodes, corresponding digraph for depth = 2.

2236



