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ABSTRACT

We propose an improved statistical characterization of the
field of wavelet coefficients of natural images. Based on this
characterization, we introduce Morphological Representa-
tion of Wavelet Data (MRWD), a novel coding framework
for both image and video coding applications. MRWD de-
parts from existing wavelet-based coders in its use of a rad-
ically different set of primitive operations —non-linear, mor-
phological operations—-, for efficiently encoding the wavelet
data field. Simulation results are very encouraging: a pre-
liminary algorithm based on the morphological data struc-
ture is able to achieve about 0.5 dB of gain in SNR over
Shapiro’s state-of-the-art zerotree-based wavelet coder [1]
at a coding rate of 1 bpp for the “Lenna” image.

1. INTRODUCTION

Since the introduction of wavelet bases for signal repre-
sentation, much attention has focused on their application
to image coding. This interest stems from the fact that
wavelets provide a space-frequency decompostion of images
that allows both good frequency compaction of energy (typ-
ically into low-frequency coefficients) and good space lo-
calization of energy around edges. To exploit these com-
paction properties, an image coding algorithm requires an
accurate statistical characterization of the joint distribution
of wavelet coeflicients. This paper proposes an entirely new
characterization (based on simple non-linear operators) of
the spatial energy distribution across wavelet bands. The
new characterization motivates the formulation of a new,
high-performance coding algorithm based on morphologi-
cal representation of wavelet coefficients.

Typical transform coding algorithms consist of three
stages: a linear invertible transform (for decorrelation) fol-
lowed by a (lossy) quantization stage, and entropy coding
of the quantized data. An important feature of a good lin-
ear transform is its ability to compact maximum energy
into few coeflicients so that the second stage of the algo-
rithm can quantize a large number of coefficients to zero.
Substantial coding gain is achieved by exploiting the first-
order distribution of these zeros (i.e. the marginal probabil-
ity of zeros). The standard JPEG algorithm significantly
improved on earlier approaches to transform coding (e.g.
zonal quantization) through its use of zero-runlengths and
end-of-block symbols to efficiently represent zeros. As fur-
ther evidence of the importance of zero coefficients, recent
research [5] has demonstrated substantial improvement on
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standard JPEG encoding by optimizing the quantization of
zeros.

The wavelet’s ability to compact energy into few, typi-
cally low-frequency, coefficients, while compacting edge en-
ergy into few, spatially localized, high-frequency coefficients
makes it a very promising linear transform for application
to tramsform coding. Compared with a DCT-based algo-
rithm, one would expect a wavelet coder to achieve similar
decoded image fidelity using fewer non-zero (denoted signif-
icant) coefficients, with the reduced number of significant
coefficients yielding improved coding efficiency. However, to
realize the expected improvements in coding performance,
an efficient method is needed for representing the large
number of zero coefficients (equivalently, for representing
the location of the significant coefficients). Early wavelet
coders (e.g. [4]), based on classical bit allocation strategies,
use a first-order probability model of frequency bands of
wavelet coefficients as the basis for coding the high-band co-
efficients, thus effectively exploiting the marginal probabil-
ity of zero-valued coefficients in these bands. However, re-
cent work with wavelet transforms have found that the field
of zero coefficients exhibit significant spatial dependencies.
Specifically, the quantized zero-valued (likewise, for the sig-
nificant) wavelet coefficients appear much more clustered
than would be expected for a random, 2-D Poisson distri-
bution of points having the same marginal probability (see
Fig. 1). A natural coding framework for exploiting these
spatial dependencies is to represent the field of coefficients
as a composite of two distinct information sources: first, a
source specifying the location of:significant coefficients, and
second, a source providing the values of significant coeffi-
cients. Both zerotree quantization, applied in (1, 2], and the
algorithm presented in this paper are solutions for the cod-
ing problem posed by the first of these information sources:
How does one efficiently represent the binary field specify-
ing the location of significant coefficients? We refer to this
binary field as the significance field.

If coefficients were independently distributed within each
band of wavelet coefficients (i.e. approximating a 2-D Pois-
son point process - possibly with different densities in differ-
ent bands), the significance field could be optimally coded
with classical approaches to optimal bit allocation among
frequency bands. While studies have reported lack of cor-
relation among high-frequency wavelet coefficients, there
is ample evidence of substantial dependencies (e.g. image
structure can be clearly recognized in the significance field).
[3] presents empirical evidence of dependencies in the signif-
icance field, and uses this evidence to explain the improved
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Figure 1: Location of coeflicients in the wavelet domain.

performance achieved by zero-tree quantization methods.
Because groups of zero-valued wavelet coefficients occur in
natural images with much higher probability than would be
suggested by the marginal probability of zeros, coding per-
formance can be improved by more efficiently representing
groups of zeros. Zerotree quantization offers one approach
for realizing this improvement. Algorithms incorporating
zerotree quantization introduce a special symbol (zerotree
symbol) to represent certain tree-structured sets of zero co-
efficients. Using a rate-distortion optimality criterion for
deciding when to apply this special symbol, wavelet coders
realize 1-2 dB PSNR improvement (at 1 b/p) on typical
images.

Zerotree quantization can be viewed as a scheme for
efficiently identifying zero regions in the significance field,
leaving the coder to use standard methods to define the sig-
nificance field everywhere outside these regions. The main
drawback of zerotree quantization is that it approximates
arbitrarily-shaped zero regions of the significance field as
the union of a highly constrained set of tree-structured re-
gions. Due to these constraints, certain zero regions, not
well aligned with the tree-structure grid, may be very ex-
pensive (in bitrate) to represent, and many portions of zero
regions are not included as zerotrees at all. The next section
proposes a way to efficiently represent arbitrarily shaped re-
gions of zeros in the significance field.

2. MORPHOLOGICAL PREDICTION OF
SIGNIFICANCE

Zerotrees indirectly exploit clustering in the significance
field by identifying regions of zero significance, thereby im-
plying the clustering of significance in the remaining re-
gions. We propose to directly exploit clustering, by charac-
terizing the high probability of significance in regions close
to coefficients which have already been found to have high
energy. This approach assumes sequential transmission of
both the significance field and the values of significant coef-
ficients (i.e. once the significance of a coefficient is known,
its value is immediately transmitted). Based on information
provided by previously transmitted coefficients, our method
will predict a region on which there is a high probability of
significance. This section describes the operation of mor-
phological prediction, which will serve as the basic building
block of the algorithm defined in the next section.

At every stage 1 in the coding process (ignoring ini-
tialization), consider a partitioning of a certain band of
wavelet coefficients into Q,, the regions of the significance

field that have been transmitted prior to stage ¢, and Q,
the remaining coeflicients. Note: @Q; includes both signifi-
cant coeflicients and zero-valued coefficients. It is possible
to code the coefficients on Q; using standard methods which
would characterize the first-order probability of values on
Qi. However, we can outperform such an approach by first
identifying some subset of Q; whose probability of signifi-
cance is much higher than on @;: overall, and sending that
subset with respect to an accurate first-order probability
model. We use the morphological operation of dilation to
identify such a subset with high likelihood of significance.
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Figure 2: Morphological Dilation.

Let Si denote a subset of @; containing all coefficients
found to be significant. Let B represent some structuring
element (an arbitrary set), and let & denote the dilation
operator. We predict that the subset (S; & B) — Q:, where
X —Y is defined as all elements of X not contained in Y,
has high likelihood of significance. Figure 2 illustrates how
this set is constructed. Assume the sets Q; and S; C Q;, as
shown. The structuring element B is an arbitrary set which
has the intuitive role of defining a morphological distance.
The elements of (S; @ B) can be viewed as all elements
some distance from S;, where B defines the distance. The
dilation (S;®B) is defined as the union of many translations
of the set B, each centered on some element of S;. Thus, for
common structuring elements like B, dilation produces an
enlarged set containing the original S;, plus a set of nearby
elements. [3] provides empirical evidence that, if S; contains
the large-valued wavelet coefficients, the set (S; & B) — Q:
has much higher first-order probability of significance than
the set Q. (Note: In fact, the concentration of significance
in (S ® B) — Q: could be viewed as a definition of clustering
of significant coefficients.)

3. THE MRWD ALGORITHM

The morphological predictor defined in the previous sec-
tion provides the basic building block used by the MRWD
Algorithm to represent the significance field. This section
details the algorithm structure. Our algorithm adopts the
standard architecture for subband coders: a unitary linear
transform for pixel decorrelation, quantization of the coef-
ficients, and entropy coding of the resulting symbol stream.

Linear Transform using wavelets: We use the
biorthogonal spline variant filters with less dissimilar length
described in [4] to calculate the wavelet transform. These
filters are chosen because they satisfy the perfect recon-
struction property with linear phase, thereby permitting a
graceful way of dealing with the image boundaries using
symmetric extension. For computational reasons, as in [2],
we treat our filters as being approximately orthogonal (with
little loss in performance) so as to enable rate-distortion
analysis (using a squared-error distortion metric) directly
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in the wavelet domain. We grow the wavelet tree to a depth
of 4 in our simulations.

3.1. Quantization: Clusters of Signal Energy

In order to address the efficient management of the quan-
tized wavelet data (we use simple uniform scalar quanti-
zation), we invoke a new data structure centered around
clusters of wavelet coefficients. Our structure is motivated
by the empirically verified hypothesis (see Fig. xxx) that
signal energy in the high-frequency wavelet bands tends to
be highly clustered or localized (corresponding to the pres-
ence of edges/textures in the original image). We propose
to iteratively apply the morphological predictor described
in the previous section to efficiently represent these clus-
ters. The net effect of the iterative process is to partition
the wavelet data into two sets: one set (corresponding to
edges and textures) having relatively significant coefficients,
and the other (residue) set having a very low probability of
signficant values. The first set can be described as Qp, for
the final stage 1 = I of the algorithm, and is entirely repre-
sented using morphological prediction. The second set Q;
can either be ignored completely (a reasonable strategy at
low bit-rates), or isolated coefficients in @; can be repre-
sented with various ad-hoc approaches. Note that, in the
first case where Q7 is ignored, arbitrarily shaped regions
of zero coefficients are implicitly defined with no additional
bitrate!

To efficiently represent the set of clusters via sequential
morphological prediction, a seeding process is needed. (Re-
call: each stage of morphological prediction assumes a set
@Q: of previously transmitted coefficients.) For each clus-
ter of significant coefficients, the encoder initializes Qp to a
“seed” value corresponding to a single significant coefficient
location within the energy cluster (typically to the largest
magnitude in the region), explicitly sending its location and
value. Based on morphological prediction, the significance
field (and corresponding significant values) is transmitted
for an expanded region around the seed. Region growing
finally terminates when the energy “island” is completely
surrounded by a strip of insignificant values, where the strip
width depends on the size of the structuring element size
B. Thus, our coding data structure results in an efficient
data-dependent way of capturing the shape of these energy
clusters.

Note that our new representation implies a data-dependent

scanning order of the coefficients. Under the assumption
of clusters surrounding high energy coefficients (with the
amount of energy decaying with increasing distance), this
scanning order results in a concentration of coefficients with
large magnitudes at initial positions in the scan order. In
order to achieve higher coding efficiency, we apply marginal
return analysis in a rate-distortion (R-D) framework to de-
termine the optimal termination point (i.e. cluster length
) in the scan. That is, the encoder reserves the right to
send an End-Of-Block (EOB) symbol to signal the end of
the cluster-scan path to the decoder at any point in the
stream. R-D optimization is performed by the encoder to
determine where to optimally terminate the scan. In [5],
a method was proposed to implement this optimization for
JPEG, where each DCT block is scanned in a fixed order,

and both the optimal location of the EOB symbol and the
optimal subset of non-zero coefficients is found by mini-
mizing a Lagrangian cost function. In our case, we regard
clusters as generalized, data-driven-shaped blocks. As the
scanning order and the shape of the generalized blocks both
depend on the actual values sent, the analysis of the deletion
of “midstream” coefficients becomes very complex. How-
ever, because high energy values tend to concentrate at the
beginning of the cluster, we hope that by trimming its tail,
considerable savings in rate can be obtained, for a moderate
increase in distortion. To implement trimming, we define
a Lagrangian cost function J(Cn,A) = Dyn + AR,, to be
minimized for each cluster:

C; = First 1 coeflicients in cluster C
i—1 n—1
D = Z(Ck - &) + Zci
k=0 k=1
1—1
R = loga(NM)+ ) log,(1/P(&))
k=0

where & are the quantized-dequantized coefficients, ci
are the unquantized coefficients, P(&x) is the estimate of
the first order probability mass function obtained from com-
puting the histogram of the quantized bins, and the term
log2(N M) in the rate accounts for having to explicitly send
the seeds (NxM is the image size). Notice how this con-
stant factor added to the cost of each cluster reflects the
fact that this primitive is more efficient when applied to
large, high energy clusters, and acts penalizing small ones
with little contribution to distortion reduction

3.2. Entropy Coder: Adaptive Arithmetic Coding

The resulting stream of quantized bins is compressed via
adaptive arithmetic coding. We use a size 2 alphabet for
this coder, where each symbol is assigned a sequence of
bits proportional in length to its magnitude, because we
found empirically that this yields better compression than
using an alphabet with the number of symbols equal to the
number of quantization levels. We attribute the improved
performance achieved with the small alphabet coder to its
ability to adapt quickly to data statistics.

4. EXPERIMENTAL RESULTS

Two versions of the MRWD algorithm were tested on the
standard Lena test image. Codecl only codes clusters of co-
efficients, ignoring @y, for : = I the final stage of morpho-
logical prediction. At high bitrates, Codecl has the disad-
vantage of not be able to represent isolated coefficients with
significant energy. Codec2 codes clusters of coefficients like
Codecl, but reserves some bitrate for representing isolated
coefficients in @;. For the Lena image, Codecl achieves a
performance of 39.6dB at 1bpp, matching results obtained
with the standard zerotree algorithm, but falling 1dB below
the rate-distortion optimized version of zerotrees. Codec2
improves over codecl by 0.3dB at the same bitrate, suggest-
ing a mixture model of cluster processes, with important
energy existing in clusters with varying densities.
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While the rate-distortion optimized zerotree algorithm
(SFQ) of [2] outperforms the MRWD algorithm by the ob-
jective measure of PSNR, we suggest the possibility of ad-
vantages in subjective quality due to investing bits in areas
of clustered energy (usually associated with signals) at the
expense of bits to isolated coefficients (often associated with
noise). Our final simulations explore this this noise reduc-
tion property of the proposed algorithm. We created a syn-
thetic image (see Fig. 4), to which white noise was added.
This addition of noise results, in the wavelet domain, in a
number of randomly located low-energy coefficients. The
noisy image was then encoded both with codecl and SFQ,
with a target bitrate = 0.1bpp. The SNR of the decoded
images against the noisy original was 27dB for SFQ, and
26.85dB for codecl. However, the SNR against the noise-
less original was 28.1dB for SFQ, and 28.7dB for codecl. In
Fig. 5, the locations of coefficients for the noisy and noise-
less image, and those selected by codecl for transmission is
shown.

5. CONCLUSIONS AND FURTHER WORK

The new characterization of the random field of wavelet
coefficients of image data has been proposed, leading to a
morphological prediction representation of clusters of im-
age energy. Based on this new model, two codecs were con-
structed, and their performance tested on real and synthetic
data.

We anticipate 4 directions of future research: 1) ex- |

panding the current approach to support morphological pre-
diction of significant values (in addition to the significance
field); 2) developing codecs based on a mixture model of
cluster densities; 3) integrating morphological predictors
with motion compensation, for video coding; and 4) de-
veloping an embedded codec to support progressive trans-
mission.
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Figure 3: Zooming on Lena’s hat: (a) original, {b) MRWD
decoded, (c) SFQ decoded.

Figure 4: Reconstructions of the synthetic image: (a) orig-

inal, (b) MRWD decoded, (c) SFQ decoded.

Figure 5: Location of coefficients in the wavelet domain
for the synthetic image: (a) noiseless original, (b) noisy
original, (c) MRWD selected.
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