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ABSTRACT

In this work, we propose an algorithm to use in de-
signing a subband coder (SBC) constructed by wavelet
packet, to achieve minimum distortion for given bit
budget and implementation complexity. We map the
QMTF tree structures onto a binary tree, then formulate
the task as an optimization problem including coding
bit and implementation complexity constraints. The
problem is dissected into two phases. First, we derive
the optimal bit allocation strategy which covers the en-
tire range of bit rate, and second, we search for the op-
timal subband decomposition by using a fast dynamic
program.

1. INTRODUCTION

Since a wavelet packet is useful in designing a subband
coder (SBC) because it provides flexible subband de-
composition to meet a signal’s spectral behaviors [1].
The performance of an SBC improves as the coding bit
rate and number of subbands increase. However, the
higher coding bit rates result in the higher transmission
costs, and high number of subbands must lead to more
implementation complexities. Because of these trade-
offs, it is necessary to find the optimal bit allocation
for a given coding bit budget, as well as the optimal
subband decomposition for a limited implementation
complexity. These two trade-offs are also closely cou-
pled, so the determination of bit allocation depends on
the determination of subband decomposition, and vice
versa. In this work, a new approach to designing a
wavelet packet based SBC is presented. Then the pro-
posed method is applied to low bit image compression
with the use of vector quantization (VQ). In the first
phase, we provide a strategy for designing optimal sub-
band quantizers for a certain subband decomposition,
and then in the second phase, we search for the optimal
subband decomposition for a given optimal quantizor
set. Therefore, unlike previous studies [1], [2], our de-
sign method simultaneously provides the optimal quan-
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Figure 1: One example of tree structured QMFs and
its nonuniform subband decomposition.

tizer scheme and the optimal subband decomposition
scheme.

2. WAVELET PACKET AND TREE
STRUCTURED QMFS

The tree structured connections of quadrature mirror
filters (QMF) realize nonuniform subband decomposi-
tions, as shown in Figure 1 [3]. The family of wavelet
bases constructing such nonuniform filter banks is re-
ferred to as a wavelet packet. One advantage of wavelet
packet lies in flexible adjustments of the bandwidth in
respond to a given frequency location.

In separable space, a two dimensional wavelet basis
can be the product of vertical and horizontal wavelet
bases. Since the separability makes it possible to con-
vert 2-D QMF into a serial connection of horizontal
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and vertical QMFs, row and column operations alter-
nate. Thus, the resolution of a 2-D subspace is the
product of row and column resolution. In this work, to
make full use of this separability, row and column res-
olutions may be different, and the 2-D subspace shape
is not necessarily square.

3. DEFINITION AND NOTATION

To deal with the QMF trees, the followin definitions
and notations are needed.

¢ S : Tree mapping the structure of QMF tree. Node
1 is the root node. The branch from node ¢ to node 2i
includes lowpass filter bank, and the branch from node
i to node (2i + 1) includes highpass filter bank.

o L(S) : Leaf node set of tree S.

o d;: Depth of a node i, or d; = [log, i} — 1. The
subband size corresponding to node i is 7/2%.

¢ Q(S) : Quantizer set for the subband coder S.

e E(S,Q(S)) : Lower bound of reconstruction error
variance, or mean square rate distortion evoked by the
subband coder S with quantizer set @Q(S).

4. PROBLEM DEFINITION

If a subband signal whose bandwidth is /2% is en-
coded by R; bits/sample, the transmission rate of the
subband signal is 2 57 * R;. Since the sum of the sub-
band transmission rates is equal to the transmission
rate of the coder, with total R bits/sample, we obtain
R=3cis 1‘- In addition, the cost for implement-
ing the sub and i can be calculated as the implementa-
tion complexity value w;. So, the implementation cost
will be W(S) = ZieL(s w; <W

Then, the task can be defined as an optimization
problem like the following

" E(S*,Q%(S)) = min

Jn ESQS) (W

Bit constraint : R(S) = Z % <R
ieL(S)

Complexity constraint : W(S) = Z w; < W
i€L(S)

5. RECONSTRUCTION ERROR ANALYSIS

Without loss of generality, we can assume that the sub-
band size of a channel is #/M = 7/2%. The channel
filter banks denoted as hi(n) and fi(n) are made of d;
connections of QMFs. Since quantization noise ¢;(n)
is uncorrelated with the subband signal, the channel

error e;(n) is produced by only ¢;(n), and uncorrelated
with the channel reconstruction signal. Then, the re-
construction error is

e(n) = Z ei(n) = Z {Zq;(r)fi(n—rM)}

i€L(S) i€L(S)

Theorem 1 The reconstruction error variance of e;(n)
is calculated as

Bles(n)} = 37 B{las?} 3 | £ ()]’

Proof: Since e;(n) isa cyclostationanl.}y process with the
period M, the average autocorrelation of e;(n) is com-
puted by taking a time average with respect to cyclo-
stationary period M. Then

Ri(n) = M I—o R,(I n+1)

=4 T .5, F=rM) f(l+n—sM)Ry(r —s)
Since Ry(r — s) = o2, - 6(r — 3),

=—*Z ' FU-rM)fi - M)

Thus, the reconstruction error variance is

2 M-1

ElamP} = R =723 3 |f(-rm)f
=0 r
0'2A . 2
= ﬁ%}lf(m)l o

If the Shannon lower bound is used, the lower bound of
reconstruction error variance of the SBC with subband
decomposition S is expressed as
2_2R‘ﬁ;0'34
ES,QE)= ) —5 = 2)

i€L(S)

where R; is the bit number of quantizer ¢;, §; =
>om l f'.(m)l2 which is filter energy, and o2, is the signal
variance of subband .

6. PHASE I: OPTIMAL BIT ALLOCATION

Since Q(S) is functions of allocated bits, the optimiza-
tion problem at this stage is
} 3)

. . 622—2R‘ﬂi0'3.
JRESQS) = “k‘.-“{ 2, —m

i€L(S)

such that Z%SR, R; >0

i€L(S)

The following theorem solves (3).
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Theorem 2 Define the subsets L'(S) and L"(S) for a
distortion threshold 6 to be

L'(S) = {leaf node i | Bio?, > 6, i € S}
L"(S) = {leaf node i | B;o?, <0, i€ S}

Then, 8 is explicitly solved as

1/a(S)
p = 93RS [ I (ﬁ.-azi)""‘] @

i€L'(6,5)
where a(S) = Y iey(s)
So, the optimal bit aSIocatzon is given by

0 1fﬂ,~0'2. <@
Bi=19 110 (”—L) if o2, > 0

and the minimum distorlion becomes
g ﬂ,'az.
. — 2 . = __i
min £(S, Q(8)) = € iGEL(S:)mm (244, 7% > (5)

Proof: The unconstrained problem equivalent to (3)
is

. ﬂ:
min min { Ao + ——* "' p(R:) (6)
’ {,-g(;) Fizo { 2 } }

where p(R;) = 22728,

Since p(R;) is decreasing and convex,

mm {z\2d '3' ”' (R:)}
ladsto gi=0 ifA2—fiolf(0) 0
N+ il (R) €0 < A< —Ba2,0/(0)

Let 6 = A/(2¢2In2). Then, the optimal bit allocations
are given from (7) such as

0 if 102, < 6
Bi = 4 1pg, (29%) itpo2 20 O
2 v

By substituting (8) into }=,c ;s R;/2% = 2R, the pa-
rameter & can be found as the solution of

so= > mion(f)=m @

i€L’(8,5)

S5(0) is strictly decreasing on # = [O,maxﬂ,-a':‘,’..], and
S(0) = oo, S(maxpB;o2) = 0. Therefore, § has the
unique positive solution, and is solved as

1/2‘-‘] 1/e(5)

6 = 272R/a(S) [H:'GL'(S) (#:3.)
where a(S) =

(10)
E,-Ey(s) 55”

By putting (8) into (3), the minimum distortion is ob-
tained as

) . 6* B 3-’
g&%E(S,Q(s)):ez Z min (-27-'_’2—(;"—>

i€L(S)
Q.E.D

For the case of high bit rate, since L'(8, S) = L(S),

and 3 e 100,5) 517 = 1, 8 becomes

e=2-”‘{ [T Bo2)"™ } (1)

i€L(S)

7. PHASE II: OPTIMAL SUBBAND
DECOMPOSTION

The task in this phase is to find the optimal subband
decomposition S* for a given implementation complex-
ity W, with the assumption that the subband quantizor
set @*(S) is optimally decided. From (11) and (5),
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ES,Q(8) > 272 T (Biel) (12)

i€L(S)

After taking the logarithm of (12), the optimization
problem at this stage is stated as

. . 1 2
min 0(S) = n'}gm{ Z Flogﬂ;crv',} (13)

ieL(S)

such that

Z w; <W

ieL(S)

For most real signals, the reconstruction error de-
creases as the number of subbands is increased. So, ifa
cost function W(S) is increasing for the number of sub-
bands, O(S) is a decreasing function. With this fact,
it is proved that the constrained optimization problem
(13) can be converted to an unconstrained optimization
problem with the Lagrange multiplier.

Theorem 3 If a cost function W(S) is a increasing
function for the number of subbands, |L(S)|, the un-
constrained problem for fized A > 0,

min{0(S) + AW(S)} (14)

solves the constrained optimization problem (13) when
W(S*)=W..
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Figure 2: Optimal Subband Decomposition for Lena

and it’s distortion curve for 1 bit/pixel.

Proof: Let S* the solution of (14}, and then for any
subband structures satisfying W(S) < W,

O(5*) + AW (S*) < O(S) + AW(S)
Or, O(S*)-0(S) < XW(S)-W(S5"))
And, O(5*) - 0(S) < A(W(S)-W.)

Since O(S) is strictly decreasing for W(S), and A > 0,
O(S*)<0(S) for W(S)>W(S*)=W,

Therefore, if the solution S* of an unconstrained prob-
lem happens to be W(S*) = W,, the unconstrained
problem (14) is identical to the constrained problem
(13). Q.ED

Theorem 3 implies that as A sweeps over positive
numbers, all operating points of (O()), W())) are cre-
ated. The operating points draw a convex hull. The
essence of this algorithm is that the Lagrangian costs
of parent node and child nodes are compared at each
node, and if the Lagrangian cost by child nodes is more
expensive, then the subtree hanging on the parent node
is pruned. The tree of the surviving paths is optimal
for a fixed A > 0, therefore, the algorithm constructs
only the optimal tree for a given A > 0.

8. APPLICATION TO IMAGE
COMPRESSION

Figure 2 shows the optimal subband decompositions
obtained from the proposed algorithm and the real dis-
tortion curve for 1 bit/pixel compression. Unlike con-
ventional R-D curves, the distortions are plotted versus
the number of subbands. The real distortion is compat-
ible with the theoretical lower bound distortion curve.

F gure 3: 0.1 bit/pixel without entropy}éoding, 5 sub-
bands. PSNR is 27.53 dB

So, it is verified that the proposed algorithm can pre-
dict the optimal performance of an SBC, as well as
provide the optimal designs for given coding bit bud-
gets and implementation complexities. As an example
of low bit compression, Figure 3 shows a 0.1 bit/pixel
compression of the 8 bit/pixel 400x400 ” Lena” , without
entropy coding. The number of subbands is 5, and fol-
lows the subband decomposition appearing at Figure 2.
Compared as to bit rate, the picture does not suffer se-
vere degradation and a blocking effect. Therefore, the
proposed algorithm obtains competitive performance
with lower bit rates and fewer implementation com-
plexities.
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