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ABSTRACT

This paper addresses the issues of time and compression effi-
ciency in image transformation. We propose a novel basis se-
lection scheme which improves transformation efficiency by
exploiting the energy compacting characteristic in the fre-
quency domain. In a typical complete transformation, a
large number of basis functions have low coding efficiency,
and thus are not necessary in the encoding process. By re-
moving these functions from the basis set, we improve the
time and the compression efficiency of the encoding process
while maintaining a high reproduction quality. We have cho-
sen to use the Gabor Transform to demonstrate our proposed
method. Experimental results with the Gabor Transform are
presented to demonstrate the effectiveness of our method.
Finally, issues related to the application of this approach in
image sequence encoding and the adaptation of our approach
to other transformation schemes are discussed.

1. INTRODUCTION

Transform coding is one of the most widely used tech-
niques in image coding applications. In image transforma-
tion, highly correlated image elements are converted into a
set of more independent coefficients. These coefficients can
be quantized and coded at a much lower bit-rate than the
original pixels. Further compression can be achieved by elim-
inating some of the coefficients that have small values. The
fact that these coefficients can be coded at a low bit-rate
is due to the energy compacting characteristic of the trans-
formation [2]. Most of the energy in the image elements is
transformed into a small number of coefficients in the fre-
quency domain, which gives the coefficients a low entropy.
However, the usefulness of this energy compacting charac-
teristic has only been explored in tasks that are performed
after the transformation process (e.g., coefficient selection
and quantization). We will examine the energy compacting
characteristic of the transformation process using the Gabor
Transform in the upcoming sections. The objective of this
research is to utilize this energy compacting characteristic to
improve the overall time and coding efficiency of the trans-
formation process.

It has been found that a carefully parameterized fam-
ily of Gabor Elementary Functions (or Gabor functions) can
capture the salient tuning properties in spatial-frequency,
size, orientation, and phase relationship of the cortical sim-
ple cells [7]. These selectivities, especially the frequency and
orientation preferences, have a direct effect on the perfor-
mance of the transformation process. However, most of the
studies in Gabor Transform have been directed toward the
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transformation algorithm, and little attention has been paid
to the selectivities of the Gabor functions. Similarly, little
attention has been paid to the frequency and orientation at-
tributes of the image features in the studies of transformation
algorithms.

In this paper, we propose a novel approach to utilize
both the frequency and orientation information in the in-
put images. We maximize the performance of the Gabor
Transform by selecting the basis functions according to the
frequency and orientation attributes of the image features.
In particular, we construct an incomplete basis set that can
encode an image in less time, produce a higher compression
ratio, and yet maintain a high reproduction quality in com-
parison to the complete basis set. Furthermore, our approach
is “domain-oriented,” which means the basis set can be used
to transform other images that have similar statistical struc-
tures without reconstructing a new basis set [8]. We call this
basis set the Maximum-Variance (MV) basis set.

In addition to the improvement in time and compres-
sion efficiency, the MV approach also has an advantage in
the compression of images with peculiar statistical struc-
tures (e.g., images of computational fluid flow). Most of
the transform-based image compression algorithms are de-
signed to handle natural images whose energy is assumed to
be concentrated in the low-frequency regions [12, 13]. As a
result, these algorithms may not able to capture the informa-
tion in images that have peculiar statistical structures and
high energy distribution in the high-frequency regions. The
proposed MV approach takes into consideration the energy
distribution of the image structure and has a great potential
for compression applications in the area of scientific visual-
ization.

The rest of this paper is organized as follows: In Sec-
tion 2, we provide a brief review of some related work. In
Section 3, we describe the computational theory behind the
MV approach. Experimental results in still image encod-
ing are presented in Section 4 to demonstrate the time and
compression rate improvement by the MV approach. In Sec-
tion 5, we discuss the potential applications of the MV ap-
proach in compressing scientific data/images as well as image
sequences. Finally, we summarize the contributions of this
paper in Section 6.

2. RELATED WORK

The Gabor Transform has been widely used in im-
age encoding and image compression applications [3, 4, 15].
Among other transform-based image encoding schemes (e.g.,
the Discrete Cosine Transform and the Fourier Transform),
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the Gabor Transform has attracted attention because the
Gabor functions are optimally localized in the joint spatial
and spatial-frequency domains [3, 6]. In addition, the Gabor
Transform presents several computational challenges since
most of its implementations require O(n®) (n is the number
of basis functions in the complete case) operations [3, 4]. The
Gabor Transform produces low entropy coeflicients whose
energy in the frequency domain concentrates in the regions
that correspond to the most prominent image features.

Recently, Taubman and Zakhor [14] proposed an ori-
entation adaptive coding scheme. The scheme of Taubman
and Zakhor resamples small blocks of the image such that the
image features in the resampled domain become horizontal
and/or vertical. This resampling reduces the activity of the
high frequency bands in a subband coding process. In addi-
tion, the artifacts introduced when the image is coded with
low bit-rates are less disturbing since they lie parallel to the
dominant image features. However, the scheme of Taubman
and Zakhor is an adaptive coding scheme, which requires the
resampling of every input image despite the invariant statis-
tical structure in most natural images [5].

3. OUTPUT VARIANCE AS A SELECTION
CRITERION

In the typical, complete Gabor Transform, there are
as many basis functions (Gabor functions) as the number
of pixels. The basis functions cover all possible frequency
ranges from -0.5 to 0.5 horizontally and vertically. However,
close inspection of the resulting coefficients reveals that only
a small number of the coefficients have large values, while
most of them have very small values (see Figure 7 in [3]).
In addition, the Gabor functions that produce coefficients
with large values are the ones that have frequency parame-
ters that match the dominant image features. In general, a
transformation process can be represented by the following

equation:
n

I[z,y] = Zc.-G.-[z‘,y], (1)

where [ is the reconstructed 1image, G; is the basis func-
tion, c; is the corresponding transformation coefficient, and
n is the total number of basis functions. In the case of the
two-dimensional Gabor Transform, G; is a Gabor function
defined as:

Glaa) = ew(Ca(ESPL 4 Gl

exp(—27j(uiz + viy)), (2)

where j = /=1, (2., ¥:) and (a, B) are the spatial center and
spatial spread of the function, respectively, and (u., v;) is the
frequency center of the function. We can see from Equa-
tion (1) that the coefficients with small values contribute
very little in the reconstruction of the image, which suggests
that these coefficients, or correspondingly, the basis func-
tions that produce these coefficients, are unnecessary in the
encoding process. Our attention focuses on the derivation of
a selection scheme that measures the coding efficiency of the
basis functions. By removing the functions with low coding
efficiency from the basis set, we reduce the time and the re-
sources needed for encoding the image with little loss in the
reproduction quality. We measure the coding efficiency of a

Figure 1: The original “Lenna” image.

Gabor Elementary Function G; based on the variance of its
response over an M x N image:

Var {Oi[z,y]l,z=1...M,y=1...N}. (3)

The filter response O;[z, y] = I[z,y]® Gi[z, y] is the convolu-
tion of the Gabor filter with the image. A Gabor function (or
basis function) that produces a high output variance trans-
fers more information than one with a low output variance.
It has been shown that by maximizing the output variance
of a communication channel, we minimize the entropy of the
transform coefficients and maximize the performance of the
transmission channel [1, 11]. To provide an intuitive expla-
nation, we consider a filter that produces the same (or very
similar) output values regardless of the input values. The
low output variance of the filter implies that the filter pro-
vides no useful information about the input data. Therefore,
it is desirable to have basis functions that have high output
variances with respect to the input data.

4. EXPERIMENTAL RESULTS

The MV approach was applied in the transformation
of a 256 x 256 “Lenna” image (Figure 1). We have used
the Gabor-QR decomposition [9] as the transformation plat-
form. The image was transformed using a latticed approach
to avoid dealing with large matrices {10]. We have divided
the image into 16 x 16 lattices, which corresponded to 256
basis functions for a complete basis set. The image was
transformed with five different MV basis sets as well as the
complete basis set. Figure 2 plots the output variances of the
Gabor functions in the frequency domain (“variance map”)
and the “basis map” for the 131 functions. The variance
map and the basis map display the attributes of the Gabor
functions in the frequency range of -0.5 to 0.5 in the » and
v directions. In the variance map, we use brightness to in-
dicate the value of the output variance. In the basis map,
we use the value 1 (bright point) to indicate that the Gabor
function with the corresponding frequencies is a member of
the basis set, and 0 (dark point) otherwise. The location of
the point indicates the frequencies of the function in the u
and v directions. Note the similarity between the profiles of
the variance map, the basis map, and the power spectrum
of the image (right most image in Figure 2), which enforces
our hypothesis that the MV basis set captures the dominant
features in the image (more examples can be found in [8)).

Table 1 shows the computation time, estimated com-

2206



0.25 0.25 0.25

5 0 S o 0 £ 0

-0.25 -0.25 -0.25

~0.5 -0.5 -0.5
-0.5 -0.25 o 0.25 0.5 -0.5 -0.2% 0 0.25 2.5 -0.5

-0.25 0 0.25 0.5 °
v

Figure 2: The plots of the output variances (left), the “locations” of the 131 basis functions chosen using the MV approach

(center), and the power spectrum of the image (right).

Number of Computation | Compression

basis functions time (sec) rate (bpp) NMSE
256 (complete) 387.00 1.09 0.019
224 308.61 1.03 0.020
209 27717 1.00 0.020
183 229.54 0.93 0.022
163 192.72 0.91 0.024
131 138.95 0.82 0.029

Table 1: Experimental results {obtained on a Sun SPARC
IPX workstation).

pression rates, and the Normalized Mean Squared Errors
(NMSE) of the reconstructed images. In estimating the com-
pression rates, the AC coefficients were uniformly quantized
to 65 levels while the DC coeflicients were not quantized.
Since fewer functions were used in the MV basis sets, both
the compression ratio and the transformation time were im-
proved as compared to the complete transformation. Never-
theless, the encoded images retained high reproduction qual-
ity. With 131 basis functions, the MV approach required a
total of 139 seconds, in contrast to 387 seconds in the com-
plete case, which corresponded to an improvement of 64%.
The image encoded with 131 out of 256 basis functions is
shown in Figure 3.

5. FUTURE WORK

In the following sections, we look into two different ap-
plications where the proposed MV approach may have an
impact on the performance of the image encoding process.

5.1. Scientific Image Encoding

In addition to the improvement in time and compres-
sion efficiency, the MV approach also has the advantage of
being able to capture the statistical structure of the input
images. In most transform-based image encoding schemes,
a large part of the compression comes from the pruning or
coarse quantization of coefficients in the high-frequency re-
gions. These methods assume the input images have few
high-frequency details. However, some classes of images (e-g-,
images of computational fluid flow used in scientific visual-
ization) can have dominant high-frequency image features
and a complex statistical structure that does not fall into

Figure 3: Image encoded with an MV basis set at 0.82 bits
per pixel. Only 131 out of 256 basis functions were used in
this transformation. Computation time was reduced from
387 seconds to 139 seconds.

the category of natural images. An example of such an im-
age and its variance map are shown in Figure 4. Using the
MYV approach, we will be able to select the basis functions
that capture the dominant image features in both the high-
frequency and low-frequency areas.

5.2. Image Sequence Encoding

The MV approach can be applied in conjunction with
the differential coding technique for image sequence encod-
ing [8]. In differential coding, instead of encoding each frame
of the image sequence separately, we encode the difference
of two successive frames. A “difference image” usually con-
tains little detail and has features with limited frequency
ranges; therefore, very few basis functions are needed to en-
code this information, especially if the basis functions are
well matched to the dominant image features (e.g., the MV
basis functions). Preliminary studies [8] have shown that the
difference images can be encoded with as few basis functions
as 10% of the complete set and the image sequence is still
reconstructed with high accuracy. Figure 5 shows some ex-
perimental results in reconstructing the second frame of a
two-frame sequence using the first frame and the encoded
difference image.
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Figure 4: A comptita.tional fluid flow image (left) and its
variance map (right).

6. CONCLUSION

In this paper, we proposed a variance-based basis se-
lection scheme for image transformation. The proposed MV
approach improves the compression and computation effi-
ciency of the transform process by exploiting the frequency
and orientation selectivities of the basis functions. The pro-
posed scheme was applied to the selection of basis functions
for the Gabor Transform. Experimental results showed that
the MV approach improved the computation time and com-
pression rate of the Gabor Transform by 64% and 25%, re-
spectively, and yet maintained a high reproduction quality.

Finally, we discussed the potential application of the MV

approach to encoding images for scientific visualization and
image sequences.

Since the MV basis selection scheme explores the spatial-
frequency selectivity of the basis function, other transfor-
mation schemes that transform image data from the spatial
domain into those of the frequency domain (e.g., the Dis-
crete Cosine Transform) are potential applications that can
benefit from the MV approach.
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