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ABSTRACT

A novel coding method of wavelet coefficients of images us-
ing vector quantization, referred as Successive Approxima-
tion Wavelet Vector Quantization (SA-W-VQ) is proposed.
In this method, each vector is coded by a series of vectors
of decreasing magnitudes until a certain distortion level is
reached. Analysis of the successive approximation using
vectors is given, and conditions for convergence are derived.
It is shown that lattice codebooks offer an efficient tool to
meet these conditions, with the extra advantage of fast en-
coding algorithms. In SA-W-VQ, distortion equalization of
the wavelet coeflicients can be achieved together with high
compression ratio and precise bit rate control. Simulation
results for still image coding show that SA-W-VQ outper-
forms both the EZW coder [1] and the standard JPEG.

1. INTRODUCTION

Wavelet transforms have been attracting the image coding
community in the last few years. They are mainly used to
decorrelate the image data, so that the resulting coeflicients
can be efficiently coded.

Besides the decorrelation of the image data, two di-
mensional wavelet transforms have another important prop-
erty. Despite the low correlation among themselves, bands
of same orientation look like scaled versions of each other.
That is, their edges are approximately in the same corres-
ponding positions, and hence, their non-significant coeffi-
cients are approximately in the same corresponding loca-
tions. In the coding of the wavelet coefficients, this similar-
ity can be exploited to provide an efficient addressing of the
non-zero coefficients, by generating zero-tree roots [1]. In
fact, any efficient wavelet coding technique should exploit
this property.

Since the wavelet transform is equivalent to an octave
band subband decomposition, one of its advantages is that
each band of coefficients corresponds to a certain frequency
band. Thus, the bit rate can be allocated to the bands such
that coefficients corresponding to frequency bands to which
the eye is more sensitive have less quantization distortions
(noise shaping). This, however, imposes some restrictions
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on the encoders, for they have to set up specific relative
levels of distortion among the bands in order for them to
match with the human visual system (HVS) sensitivity for
each band.

Another property of wavelet transforms is that a quant-
ization error introduced to a coefficient will appear as a
scaled version of the synthesis wavelet superimposed on the
reconstructed signal. In image coding, this implies that a
quantization error from a coefficient located, for example,
at an edge, will not be just confined to that edge, but will
be spread through the reconstructed image with the shape
of the corresponding wavelet, causing an annoying ringing.
Therefore, the edge masking effects cannot easily be ex-
ploited when coding the coefficients, and the quantization
distortion in every individual coefficient can be important
to the final image quality.

One way to achieve the last two requirements is to code
the wavelet coefficients in successive passes, whereby in each
pass the quantization error is further refined, and a max-
imum error in each coefficient can be guaranteed. Since
this also approximately guarantees an average level of dis-
tortion for each band, noise shaping can be readily obtained
by properly weighting the bands prior to coding.

Successive approximation of the wavelet coefficients with
scalar quantization, together with zero-tree coding, has been
used in the embedded zero-tree wavelet (EZW) coder [1].
In this paper we introduce a successive approximation vec-
tor quantization scheme for coding of wavelet coefficients.
It satisfies all the requirements above while exploiting the
advantages of vector quantization. Simulation results show
that the successive approximation wavelet vector quantisa-
tion achieves better performance than EZW for still image
coding.

2. VECTOR SUCCESSIVE APPROXIMATION

2.1. Definition of the problem

Successive approximation in the scalar case is equivalent to
approximation of a given length L by using at each pass
yardsticks of increasingly smaller lengths, until a certain
level of error is obtained. Generalization of this process
to k-dimensional space is not a straightforward task. A k-
dimensional vector can be defined by two parameters : its
length, which is a scalar value that corresponds to the norm
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Figure 1: Analysis of convergence for the n-dimensional case

of the vector and its orientation, which is a k-dimensional
vector with unit energy. Therefore, in vector successive ap-
proximation, unlike the scalar case, instead of yardsticks of
decreasing lengths, we deal with “vector yardsticks” having
decreasing lengths and given orientations in a k-dimensional
space. In practice, these “vector yardsticks” will be chosen
from a finite codebook, and therefore the set of possible
orientations is finite. At each pass, the “vector yardsticks”
will aim to approximate the residual vector formed as the
difference between the original vector V and its approxima-
tion so far. The question which naturally arises is: how can
one guarantee that the vector approximation process con-
verges, that is, if the number of passes is sufficiently large,
the magnitude of the residual vector will be always smaller
than an arbitrarily value.

2.2. Conditions for convergence

In this section we devise sufficient conditions for the con-
vergence of the successive approximation of vectors using a
finite set of orientation vectors of decreasing length. The
following suppositions have been made :

(1) The orientation codebook, Y, is a finite set of k-dimen-
sional vectors with unit energy. At each pass, a new
“vector yardstick” is formed as the product of the
current yardstick length and one of the unit orienta-
tion code vectors ;.

(2) The orientation codebook is built so that the solid
angle between any possible vector and its closest ori-
entation codevector is upper bounded by fmax. Thus,
at each pass the maximum error is introduced when
the residual vector is approximated by a vector with
orientation fmax.

3) The yardstick length at each pass will be scaled b
Yy
a constant factor o, so-called approzimation scaling
factor, in the range of 0.5 < o < 1.0.

(4) For a given vector V, the approximation process is ac-
tivated for the first time at a certain pass indexed
by i, if and only if & < ||V|| < &/o. & denotes
the yardstick length at pass i and ||V|| is the norm
of the vector V. Therefore, the maximum error in-

troduced by the first pass will occur in the case that
VIl =iy = b/

The sufficient conditions to guarantee the convergence
of the successive approximation by a finite set of orientation
vectors of decreasing lengths can be derived by evaluating
the worst case. Figure 1 illustrates this process. From the
supposition (2}, for each pass i, the maximum error in the
orientation is equal to #max and from the supposition (4),
the maximum error in the length will occur if the initial
yardstick length is set equal to & = a||V||. From figure 1,
defining |[7o|] = ||V{|, the magnitude of the residual vector
after n passes is given by:

I7all® = a1l + @™ VIf? = 2[[Fcsfla™|7]] cos(6max)

With the above recursive formula we can compute the
residual vector magnitudes after each pass (||7||) for any
given pair (&, fmax). We have used it to find the value of
the convergence scaling factor &, for any max in the range
0° < fmax < 90°, such that the scheme converges™ for any
a > a, where 0.5 < o < 1.0. Figure 2.a gives the values of
the convergence scaling factor & for all angles fmax in the
range 0° < fmax < 90°. Figure 2.b shows fmax against the
number of iterations required for convergence when ¢ = &.
The results illustrated in figure 2 show that, for émax up to
around 80° this successive approximation scheme is guar-
anteed to converge, provided that a suitable value of « is
chosen. For #max = 0°, which is equivalent to the scalar
case, convergence is guaranteed for o = 0.5. For this value,
the number of iterations is minimum. As fmax increases,
so do both « and the number of iterations. From a com-
pression point of view, more iterations would require more
bits to achieve a certain distortion. Hence, the selected ori-
entation codebook should be such that fpax is as small as
possible. Nevertheless, there is a compromise between the
value of fmax and the resolution of the orientation code-
book, determined by h’—g,fﬂ, where N is the codebook pop-
ulation and k is the vector dimension. In one extreme, we
have 8max = 0° for the scalar case. However, if vectors of
higher dimension are used, there can be gains in bit rate
despite the larger values of fmax and number of iterations,
due to the savings of vector over scalar quantizers.

2.3. Lattice based orientation codebooks for suc-
cessive vector approximation

After determining the necessary conditions for converge of
the successive approximation scheme, we discuss the re-
quirements of a “good” orientation codebook selection. We
need to guarantee that the maximum error in orientation
introduced by approximation at any stage is bounded by a
well defined value 8max. Moreover, the graph in figure 2.b
indicates that fmax should be as small as possible, such
that the fastest possible convergence to an arbitrary error
is achieved.

Therefore, the main requirement in the design of the
orientation codebook is to provide a fairly low value of
fmax, regardless of the individual vector locations in the

*convergence is assumed when the improvement in the ap-
proximation after two subsequent passes is less than 10~8 of the
magnitude of the original vector.
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Figure 2: Plots of 8 versus: (a) &; (b) number of iterations required for convergence.

k-dimensional space. Lattice codebooks are a good choice
for the orientation codebook of the proposed scheme, be-
cause they can offer a good trade-off between dmax and the
codebook population due to their space packing properties.
Lattice codebooks also offer the advantage of simple and
fast encoding algorithms [2] .

In general, the points of a given regular lattice are dis-
tributed on the surface of successive, concentric, k-dimen-
sional hyper-shells centered at the origin, so that all lattice
points at the same shell have the same [,-norm. In our ex-
periments, the m** spherical (r = 2) shell Si» (L) of a given
lattice Ly is the set of all L-points at the same euclidian
distance from the origin.

Assuming that the orientation codebook is built by the
lattice points from shell S,, of a given lattice L, the fol-
lowing parameters play a key role in the evaluation of the
efficiency of a particular lattice orientation codebook:

(i) the solid angle between the nearest neighbor code vec-
tors Onn (Lk, Sm);

(ii) the population of the lattice points on the particular
shell Ny (Li, Sm);

(iii) the maximum possible angle between any input vector
and its closest codevector fmax (L, Sm);

Lattices are associated with the best known sphere pack-
ings in k-dimensional space [3]. In general, the nearest
neighbor angle @y n(Lk,Sm) for a given lattice Li and a
spherical shell S, can be calculated only from the radius
of the lattice packing p(Lx) and the energy of the particular
shell 7(Lk, Sm) [4], and the maximum possible angle fmax
between any input vector and its closest codevector has
been computed exhaustively. Table 1 summarizes the para-
meters of regular lattices which give the best lattice packing
at dimensions k = 4, 8 and 16. The orientation codebooks
used and tested with our coding scheme are built based on
these lattices.

3. A SUCCESSIVE APPROXIMATION
VECTOR WAVELET CODER

In this section we introduce a new method for wavelet image
coding based on successive approximation vector quantiz-
ation, described in section 2.1. We refer to this method

lattice shell popul., [ nearest | maximum

type, index, N neighbor angle,
Li m OnnN Omax
Dy 1 24 60° 44°
Dy 2 24 60° 44°
Dy 142 48 45° 31°
Es 1 240 60° 42°
Es 2 2160 41° 41°
Eg 3 6720 33° 31°
Eg 142 2400 41°/33° 30°
Eg 14243 9120 30°/35° 25°
Aie 2 4320 60° 47°

‘Table 1: Parameters of the regular lattices with best pack-
ing in dimensions k = 4, 8,16

as Successive Approzimation Wavelet Vector Quantization
(SA-W-VQ).

In coding of images with SA-W-VQ, first the image
mean is extracted. An R stage biorthogonal wavelet trans-
form is then applied to the zero-mean image. Each band
is normalized so that the distortion equalization provided
by the successive approximation process is equivalent to a
noise shaping according to certain HVS response [5]. In the
simulation results presented, though, the HVS response was
assumed to be flat.

Each band is then divided into M-dimensional vectors.
The maximum magnitude V of all the vectors is then com-
puted. Initially, the yardstick length £ is set to aV, where
the value of a is chosen according to the fmax value of the
selected lattice codebook. All the vectors are scanned, and
the ones with magnitude smaller than £ are set to zero. Each
of the remaining vectors is replaced by its closest orientation
codevector scaled with a magnitude £. After this pass, the
locations of the zero vectors are transmitted. This is done
via 3 symbols: zero (Z), zero tree root (ZT) and coded value
(C). If a vector is zero and all of its corresponding vectors
in the higher bands of the same orientation are also zero
this vector is replaced by a ZT, so that it is not necessary
to transmit its corresponding vectors. Only for the lowest
frequency band, a ZT implies that the corresponding vec-
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tors in all bands are zero. In case that a vector is zero but
not a ZT, it is marked as Z, and no information can be in-
ferred about its corresponding vectors. On the other hand,
a non-zero vector is replaced by a coded value symbol (C).

The string generated by the three symbols (ZT, Z and
C), is then encoded by the arithmetic coder described in [6]
using an adaptive model. In the higher frequency bands,
since there are no ZT’s, the arithmetic coder uses a model
with only 2 symbols (Z and C). After encoding this string,
which indicates the locations of the zero vectors, the orient-
ation code vectors of the non-zero vectors (marked as C)
are encoded. For this purpose, the model of the arithmetic
coder is reinitialized to have as many symbols as the popu-
lation of the orientation codebook. The yardstick length £ is
then updated through multiplication by a. The difference
between the original and the non-zero reconstructed vec-
tors is coded using the new yardstick length. The indexes
of the new orientation code vectors are also encoded into
the bitstream via the arithmetic coder. This whole process
is repeated again until a certain bit rate is achieved.

The initial yardstick length, the value of &, the image
means and some coding parameters are transmitted in the
header. In our implementation the header is 10 bytes long.

4. EXPERIMENTS - SIMULATION RESULTS

In this section, the performance of SA-W-VQ with vari-

ous lattice codebooks is compared against the standard

JPEG and the EZW coder proposed by Shapiro {1]. The

wavelet transform used throughout this work was a 5 stage

octave band decomposition implemented by the filter bank

6.b5_ra7 described in [7]. We employed only monochrome

version of the images. However, extension to color is straight-
forward.

In the first experiment, we evaluated the performance
of the orientation codebooks based on the lattices given in
Table 1. First, the best value of the approximation scaling
factor o is estimated for each lattice codebook. They are,
for example, 0.55 for Dy, 0.60 for Es and 0.62 for A;g. With
the optimum values of a, A6 tends to give better perform-
ance compared to both Eg and D4 [4]. This is exemplified
in Table 2 for a bit rate of 0.4 bit/pixel.

Table 2 summarizes the PSNR results obtained by these
methods. These results demonstrate that the proposed cod-
ing scheme achieves considerably better R-D performance
compared with the JPEG coder. SA-W-VQ also performs
consistently better than the EZW coder, which is a very ef-
ficient successive approximation wavelet coder for the scalar
case.

5. CONCLUSIONS

A method of performing successive approximation of wave-
let coefficients using vector quantization (SA-W-VQ) was
introduced. An analysis of the convergence of the success-
ive approximation vector quantization (SA-VQ) was made.
It was found that the most important feature of a SA-
VQ codebook is the maximum possible error in orientation
when an input vector is represented by its closest codevector,
which makes orientation codebooks based on regular lat-
tices particularly suitable for SA-VQ.

Test Image D, Eg Ais | EZW | JPEG
BARBARA | 29.36 | 30.60 | 30.90 | 29.03 | 27.27
BOATS 34.19 | 34.78 | 35.24 | 34.29 | 32.63
GIRL 35.27 | 35.91 | 36.12 | 35.14 | 33.98
GOLD 31.01 | 32.76 | 32.61 | 32.48 | 31.38
ZELDA 38.43 | 39.36 | 39.44 | 39.08 | 37.16
LENA 256 | 30.13 | 30.15 | 30.29 | 30.06 | 28.07
LENA 512 | 35.17 | 35.86 | 36.09 | 35.02 | 33.42

Table 2: PSNR performance of SA-W-VQ (dB) for several
test images at a rate of 0.4 bit/pixel compared with the
EZW [39] algorithm and JPEG

Several lattice codebooks were compared, and the first
shells of the lattices were shown to give the best perform-
ance. Among these, the Barnes-Wall lattice Aj¢ offered the
best rate-distortion results.

SA-W-VQ has achieved very good rate-distortion res-
ults, comparable to those of the most successful methods
reported in the literature. In addition, noise shaping can
be implemented by simple weighting of the coefficients prior
to coding. Moreover, SA-W-VQ has the advantage of a very
simple encoding process due to the fast NN algorithms of
the lattice codebooks.
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