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ABSTRACT

With the advent of frame grabbers capable of acquiring mul-
tiple video frames, a great deal of attention is being directed
at creating high-resolution (hi-res) imagery from interlaced
or low-resolution (low-res) video. This is a multi-faceted
problem, which generally necessitates standards conversion
and hi-res reconstruction. Standards conversion is the prob-
lem of converting from one spatio-temporal sampling lattice
to another, while hi-res image reconstruction involves in-
creasing the spatial sampling density. Also of interest is
removing degradations that occur during the image acqui-
sition process. These tasks have all received considerable,
yet separate, treatment in the literature. Here, a unifying
video formation model is presented which addresses these
problems simultaneously. Then, a POCS-based algorithm
for generating high-resolution imagery from video is delin-
eated. Results with real imagery are included.

1. INTRODUCTION

Video standards refer to the format used to store, transmit,
and display video signals. A standard can be described by
a particular spatio-temporal sampling lattice [1]. Since var-
ious video systems ranging from High-Definition television
(HDTYV) to videophone have different spatial and temporal
resolution requirements, there are a variety of standards in
use today. The task of converting from one of these stan-
dards to another is referred to as standards conversion. Two
examples are deinterlacing and frame rate conversion.

High-resolution (hi-res) standards conversion involves
simultaneocusly solving the problems of standards conver-
sion, and what has previously been referred to as the hi-res
reconstruction problem. The hi-res reconstruction problem
refers to reconstructing a good quality still image from a
sequence of low-res images that suffer from one or more of
the following degradations:

¢ aliasing (due to undersampling which may be over an
arbitrary spatio-temporal lattice),

e sensor blur (due to sensor integration and relative
scene-sensor motion during a finite aperture time),

e focus blur (due to defocused lenses), and

® noise (sensor and quantization noise).
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Hi-res reconstruction aims at obtaining a still image sam-
pled over a denser sampling grid that is free from the effects
of these degradations (2, 3, 4, 5].

Our goal in this paper is to propose an algorithm that
will take an input low-res video signal sampled on an arbi-
trary spatio-temporal lattice, which is effected by the pre-
viously listed degradations, and simultaneously solve the
standards conversion and hi-res reconstruction problems.
Note that the resulting hi-res progressive images can be
subsampled on another lattice, if higher resolution video on
a lattice other than progressive (e.g. interlaced) is desired.

Solutions to this problem are useful in many applica-
tions. One is converting from NTSC interlaced video to
interlaced video for HDTV. Another application is the cre-
ation of a synthetic “video zoom”. Here, a region of the
video display is enlarged by some factor and played. Print-
ing hi-res stills from video is also an important application.
In this case it is often desirable to upsample a given low-
res image while increasing the detail. Because video signals
are commonly interlaced, the processes of deinterlacing and
removal of acquisition degradations must be combined to
produce the desired image.

There are a variety of methods used to solve the hi-res
problem when progressive low-res video is available. The
proposed solutions have 3 basic components: (i) motion
compensation, (ii) interpolation, and (iii) blur and noise
removal. Motion compensation is used to map the pixels
from the available low-res frames to a common hi-res grid.
The motion vectors can be computed on a pixel by pixel
basis by using a technique such as block matching [4], or
motion models such as pure translations, rotations, affine
transformations [2], and perspective transformations [6] can
be used. The second component, interpolation, refers to
combining the pixels that have been mapped back from the
low-res grid to the hi-res grid, to produce a hi-res image
sampled on a rectangular grid. The third component, blur
and noise removal, is needed when the low-res frames have
not been acquired using an ideal sensor. In this paper, we
are interested in algorithms that implement components (ii)
and (iii) simultaneously.

A frequency domain formulation for simultaneous inter-
polation and removal of blur and noise, has been proposed
by Kim and Su [3]. Their method, however, is restricted
to pure translational motion between low-res frames. An
affine motion model is used by Irani and Peleg [2], and an
iterative method similar to the Landweber iteration is used
to form the hi-res image. The Landweber iteration is also
used by Komatsu et. al. [4]. Rather than using a motion
model, however, they interpolate the low-res images to the
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hi-res size, and use block matching to compute a vector
for every pixel location. Mann [6] uses the same iterative
scheme as Irani and Peleg, except that a perspective mo-
tion model is used. These methods all take into account
the degradations caused by the physical dimensions of the
low-res sensor elements and focal blur, but do not address
the effect of a non-zero aperture time. In a previous pa-
per, [5], we take this into account and use the method of
projections onto convex sets (POCS) in solving the hi-res
problem. There, motion is modeled for the case of pixel-
independent translations following an arbitrary path, with
small rotation.

In this paper we provide an extension of the work car-
ried out in 5], where the problem of still frame hi-res recon-
struction is addressed, to the case where the input low-res
video signal is sampled on an arbitrary space-time lattice.
We model the following problem: video is generated using a
given low-res camera or cameras, of some continuous scene.
During the low-res imaging process we account for the fol-
lowing: (i) movement of the low-res camera, (ii)) movement
or changes in the contents of the scene, (iii) a non-zero
sensor aperture time, (iv) nor-zero physical dimensions for
each individual sensor element (i.e. giving rise to a particu-
lar image pixel), (v) blurring caused by the imaging optics,
(vi) sensor noise, (vii) sampling of the continuous scene on
an arbitrary space-time lattice. We refer to this model as
the video formation model. The modeling is then used in
conjunction with the method of Projections onto Convex
Sets (POCS) for reconstructing a hi-res version of this low-
res video.

2. A UNIFYING MODEL

In this section we present a model that is used to unify the
problems of standards conversion and hi-res image recon-
struction. The video formation model is first presented.
Then motion trajectories are applied to the model, and
lastly, a discrete model is given.’

2.1. The video formation model

The video formation model we propose is depicted in Fig.
1. In the figure, the input signal f(z1,z2,t) denotes the
continuous video signal in the focal plane coordinate sys-
tem (z1,z2). At each point within the (21, z2) system, the
aperture time of the sensor is modeled by an integrating
function with offset in time of Z5. The output of the inte-
grator is given by

t+to+T¢
g1(z1,2,1) =/ f(.’l:l,z‘z,T)dT. (1)
t4to

The effects of the physical dimensions of the low-res sensor,
and the out-of-focus blur of the optical system are mod-
eled in the second stage of the figure. The input to this
stage, g1(z1, %2, 1), is convolved with both the kernel repre-
senting the shape of the sensor, ho(z1, z2,1), and the kernel
representing the focal blur, ho(z1,z2,t). These are both
functions of time, but we restrict them to be constant over
the aperture time. The focus blur and aperture dimensions
are thus allowed to differ from frame to frame.

The third stage in Fig. 1 models sampling with the
arbitrary space-time lattice A,. The output of this stage

is ga(my, m2, k). As a matter of convention, integer values
that appear as a function argument are interpreted as in

ga(m1,mz, k) = ga(z1 z2 t)|,, ., =V ,[my mg K7 (2)

where V, denotes the matrix that specifies the sampling
lattice, and ' denotes the transpose operation. In the last
modeling step, additive noise due to the low-res sensor is
added to the sampled video signal.

2.2. The motion model

The utility of the model is realized when object motion
within f(z1,z2,t) is taken into account. By using the con-
cept of a motion trajectory, we can express the result of the
first modeling stage in the form

g1($1,$2,t) = (3)
//f(U1, u2, tr)hl (ul, Uz, E(tr; 1,22, t))duldug,

where hq(u1, u2; &(tr; 1, 22, 1)) is the LSV blur function ker-
nel, and & denotes the motion path (defined below). We
briefly summarize the derivation of the LSV kernel here.

The motion trajectory of an object within the contin-
uous video signal is represented by the path through the
continuous sensor space (z1,z2),

é(tr; r1,%2, t) = (Cl(tr; Ti,Z2, t)> 62(t'; I, T2, t)) (4)

This path specifies the location of the intemsity value
f(z1,22,1), at time t,. The motion trajectory of a partic-
ular intensity value is often referred to as the optical flow.
The motion paths will have a temporal beginning and end,
as objects enter and leave the scene. When objects cross in
front of others, occlusions and uncovered background will
result, which can also begin or terminate a path. This con-
cept has been fully developed by Dubois in [1]. Using the
path ¢, the optical flow within the continuous video signal
can now be expressed as

f(.’l,‘l,l‘z,t)=f(5‘(ir;z1,12,t),tr). (5)

By substituting equation (5) into the video formation
model and carrying out the resulting line integrals, we arrive
at the desired form for the LSV PSF in (3). With this result,
the remainder of the image formation model can be worked
out in a straight-forward manner.

2.3. The discrete model

As in [5], the proposed POCS method for hi-res reconstruc-
tion, requires a discretized version of f(u1,u2,t,). Thus, a
discrete superposition summation of the form

g(my,ma, k) = f(n1,n2,tr)he, (n1, m2smy, ma, k), (6)

(n1,n2)

will be formulated, where it is assumed that the continuous
image f(ni,mz,t,) is sampled on the 2-D lattice A:, (i.e.
(n1,n2) are integers that specify a point in A, ). By appro-
priately choosing t. and A¢,, sampling of f(ni,n2,t,) can
be formed over an arbitrary space-time lattice.

An individual hi-res sensor element (giving rise to a sin-
gle hi-res image pixel) is assumed to have physical dimen-
sions which can be used as a unit cell if;, for the lattice A:,.
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Thus, the entire space of the focal plane is completely cov-
ered by the hi-res sensor. The term U, (n1,n2) is used to
denote the unit cell U;, shifted to the location specified by
(n1,n2). With this definition, and with the assumption that
f(u1,u2,t,) is approximately constant over U, (n1, n2), the
results from the video formation model can be posed in the
discrete formulation of (6).

It is interesting to note that even when the aperture
time is zero, if the input lattice is not progressive, the blur
function will be LSV. In this case, the solution method must
be capable of processing LSV blurs. Both the Landweber it-
eration and POCS methods have this property. The POCS
solution delineated in the next section,"however, has a mech-
anism for adapting to the properties of the additive noise,
whereas the Landweber iteration does not.

3. THE POCS SOLUTION

As in [5], we propose a POCS based solution to the hi-res
reconstruction problem. The method of POCS requires the
definition of closed convex constraint sets, within a well-
defined vector space, that contain the actual hi-res image.
An estimate of the hi-res image is then defined as a point in
the intersection of these constraint sets, and is determined
by successively projecting an arbitrary initial estimate onto
the constraint sets.

Associated with each constraint set is a projection oper-
ator, P, mapping an arbitrary point within the space to the
closest point within the set. Relaxed projection operators,
T=(1-=X)I+AP;0< A< 2,can also be defined and used
in finding an estimate in the intersection set.

We define the following closed, convex constraint set,
for each pixel within low-res image sequence g(m1,mz,k):

Ci, (m1, m2, k) = {y(n1, m2, 1) : [r¥)(ma, ma, k)] < 60},(7)
r(”)(ml,mg,k) = (8)
g(m13m2)k) - E y(nlyn21tf)htr(n1)n2;m1’m21 k)a

(n1,n3)

is the residual associated with an arbitrary member, y, of
the constraint set. Note that sets Ci.(m1,m2,k) can be
defined only where the motion information is valid. The
quantity 8¢ is an a priori bound reflecting the statistical
confidence with which the actual image is a member of the
set C,(m1,mz, k). Since r(f)(ml,mz,k) = v(my, ma, k),
where f denotes the actual hi-res image, the statistics of
) (my, my, k) are identical to those of v(m1, ma, k). Hence
the bound §¢ is determined from the statistics of the noise
process so that the actual image (i.e., the ideal solution) is
a member of the set within a certain statistical confidence.

The projection P, (mi, ma, k)[z(n1,n2,t:)] of an arbi-
trary z(mi, n2,t,) onto Ci,(m1,m2, k) is defined similarly
to that in [5]. The difference in this case is that this for-
mulation only defines sets at the locations of the arbitrary
lattice, as opposed to over a progressive lattice. Additional
constraints such as bounded energy, positivity, and limited
support can be utilized to im prove the results. Here, we
also use the amplitude constraint set, C4 (having T4).

Given the above projections, an estimate f(nl,nz,t,-)
of the hi-res image f(n1, n2,t,) is obtained iteratively from
all low-res images g(ma, m2, k) where constraint sets can be
defined, as

frr1(na,n2, t) = TaT[fe(n1, n2,t,)] 9)

where T denotes the composition of the relaxed projection
operators, projecting onto the family of sets C;,_(m1, m2, k),
and bilinearly interpolated low-res images can be used as
the initial estimate fo(ni,n2,t,).

4. RESULTS

We conduct two experiments. The first demonstrates the
application of the algorithm to real low-res images that are
not sampled on a progressive lattice. In this case, we verify
the efficacy of the latter modeling stages under the condi-
tion of zero-aperture time. Real data from a digital camera
is used in this experiment. The second experiment is a sim-
ulation, which demonstrates convergence when the aperture
time is non-zero, and the low-res sampling lattice is inter-
laced.

In the first experiment, 6 pictures are taken using a dig-
ital camera. The camera uses a color filter array (CFA) that
samples the green signal component using a diamond lat-
tice. We assume that the focal plane of the camera is com-
pletely covered by the CFA array, and all elements have
equal size and uniform response. We process the green
channel. A conversion from the diamond lattice to pro-
gressive, and further upsampling of the progressive grid by
a factor of two, is carried out simultaneously using the pro-
posed algorithm. The focal blur was assumed to be Gaus-
sian, with a variance of 1, and a 5x5 support (units are
relative to the hi-res spatial sampling period). Motion was
computed between the the low-res pictures using hierarchi-
cal block matching [7] with quarter pixel accuracy (relative
to a progressive low-res grid). As previously mentioned, the
aperture time was assumed to be zero. The results of this
experiment are shown in Fig. 2. At the top in the figure is
the hi-res image estimated using bilinear interpolation, and
at the bottom is the POCS result.

In the second experiment, we simulate the formation of
an interlaced low-res sequence. Five low-res fields are gener-
ated using velocities vy, = v2, of 4.25, 4.25, 4.5, 5 and 6, in
units of pixels per high-res sample spacing, from the Nuke
image. The aperture time is set to 0.5, and a square low-res
sensor geometry is used, where a side of the low-res sensor is
2 times the length of a side of the hi-res sensor. For this con-
figuration, only -;— the area of the low-res sensor focal plane
is sampled for each field. White Gaussian noise with a 30dB
SNR is added to each low-res image, and we use the actual
motion information. In practice, global motion between
low-res images can be estimated fairly accurately at sub-
pixel resolution using block-matching or phase-correlation
techniques. Simulation results are shown in Fig. 3. At the
top in the figure is the hi-res image estimated using bilinear
interpolation, and at the bottom is the POCS result.

5. CONCLUSION

We have proposed a method for modeling video sampled on
an arbitrary lattice, that takes into account motion blur-
ring, focus blurring, and additive noise. We have applied
the method of POCS in the context of this model to simul-
taneously solve the problems of standards conversion and
high resolution image reconstruction. The effectiveness of
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Figure 1: The video formation model is presented.
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Figure 2: Results from the digital camera experiment. At
the top is the hi-res estimate using bilinear interpolation,
and at the bottom is the result using the proposed algorithm

the proposed algorithm has been demonstrated by applying
it to real data, and conducting a simulation.
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