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ABSTRACT

Video capture devices, such as CCD cameras, are
a significant source of noise in image sequences. Pre-
processing of video sequences with spatial filtering
techniques usually improves their compressibility. In
this paper we present a block-based, non-linear filter-
ing algorithm based on the theories of SVD and
compression-based filtering. A novel noise estimation
algorithm allows us to operate on the input data
without any prior knowledge of either the noise or sig-
nal characteristics. Experiments with real video
sequences and an MPEG codec have shown that SVD
based filters preserve edge details and can significantly
improve nearly-lossless compression ratios by 15%.

1. INTRODUCTION

Several video processing and high-quality freeze-
frame applications such as image analysis and video
printing require that the input signal be processed by a
spatial filter in order to improve its visual quality. Spa-
tial filtering has also been applied to video data as a
means of improving its compressibility. A significant
source of contamination for image sequences is the
additive notse introduced by the video capture device
(photonic noise in the case of ccd cameras, or film-
grain, when the video stream is scanned-in from ana-
log data originally stored_on film). Traditional linear
filtering techniques [, @ have often been used to
suppress additive noise in image sequences, mainly
due to their simplicity. The major drawback of such
techniques is that they tend to blur the original signal.
Arguably, non-linear filters excel in achieving noise
removal while preserving fine texture and edge
details.C!

One class of non-linear filtering techniques that
has been successfully used in the past in various noise
removal and image analysis applications is based on
the Singular-Valued-Decomposition (SVD) method
Pl. Traditional techniques usually apply SVD to the
whole image in a single, compute-intensive step, and
they don’t address the problem of distinguishing

between significantly small and insignificantly large
singular values. Furthermore, all filtering techniques
proposed so far require some prior knowledge of the
noise and image characteristics. In several applications
this information may not be available and could be
difficult to estimate from the input data.

In this paper we present a block-based, non-linear
filtering technique based on SVD that employs an effi-
cient method for estimating the noise power from the
input data without the need for additional a priori
information. The noise estimation method is based on
a scheme recently introduced by Natarajan [ for
reducing additive noise from signals using data
compression. Natarajan’s scheme, stemming from the
observation that noise is hard to compress, allows one
to filter random noise using data compression. Based
on that work, we show how one can derive a threshold
to distinguish between significant and insignificant
singular values. By applying SVD sequentially into
blocks of the image we significantly reduce the compu-
tational requirements.

Experimentation with real video sequences has
shown that the proposed SVD based filter in the case
of high bit rate, nearly lossless, video coding can effec-
tively suppress noise while preserving edge details, and
can improve the compression ratio achieved by an
MPEG codec by roughly 15%. These improvements
are achieved without utilizing any prior knowledge of
either the image or noise characteristics. To improve
the overall performance, the proposed spatial filtering
scheme can also be combined with motion-
compensated temporal filtering [7],

2. SVD-BASED FILTERING

In the theory of SVD, any m x n real-valued matrix
A can be decomposed as 4 = UZV7, where U, V are
orthogonal matrices and £ = diag(aq,a,,...,q,) is
a diagonal matrix. The elements of £ are called the
singular values of 4. In theory, the rank of 4 is the
number of its non-zero singular values. In practice,
under an additive noise model, we observe a matrix
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B=A +E, where E is a noise perturbation matrix of
full rank. In that case, the last singular values of B
will be small, but not mnecessarily zero. Let
Bi=B2=.... = B,.1=B, be the singular values of B
listed in non-increasing order. We define the effective
rank of B as r if B,=e=B,.;, where
1=r=min (m,n) and €; |IE||; is the 2-norm of E
Bl Let B=UpS5V}5 be the SVD of B=A4 +E. Given
r, let 2'p diag By, - - - ,Br0,0,..,0). For SVD
based filtering, the filtered matrix is defined as
B = U, 32’ BVg.

The main steps in our SVD based filtering tech-
nique ®! are: a) Divide an M x N image B into sub-
blocks B;. b) Perform SVD on each sub-block and
evaluate its effective rank using a threshold €. c) Set
to zero the "non-significant” singular values, and
replace B; with B’;, as defined before. By setting to
zero the non-significant singular values, in effect we
perform a lossy compression on each block. Based on
recent work by Natarajan (6], the noise and the loss
cancel out, and the reconstructed block is closer to the
original block.

The efficiency of this algorithm depends on the
accuracy of the estimate of the threshold €. An esti-
mate of this threshold can be obtained via the follow-
ing calibration scheme: a) Apply the filtering algo-
rithm on a representative noisy frame from the video
sequence for various values of the threshold €. b)
Compress each filtered image using the lossless JPEG
compression algorithm. c) Plot the compressed size
as a function of €. d) Let €” be the knee-point of the
plot. Use e=¢€" as the threshold on the SVD filtering
algorithm for the other frames. If s denotes the
compressed size of a filtered image, the knee-point is
defined as the point at which the second derivative
d?s/dlog (€)? is maximum.

3. EXPERIMENTAL RESULTS

As an example, we applied the SVD based spatial
filter to the "football” video sequence from the MPEG
test suite. This sequence consists of 150 CCIR-601
(720 x 480) interlaced frames. Following the noise
estimation phase algorithm, we filtered three frames
(No. 1, 25, and 75) for various values of the threshold
€ and we compressed them using a lossless JPEG
image compression algorithm. Fig. 1 shows a plot of
the size of the compressed filtered images as a func-
tion of €. Even though different frames have different
compressed sizes, lossless compression seems to
level-off after a threshold of € = 12 in all of them.
Indeed, the second derivative of each of these plots
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Fig. 1: Compressed size of filtered frames vs €.

showed knee-point values in the range of 11 to 15. As
a result, we selected €” = 12. (We estimate that this
corresponds to additive white noise of zero mean and
a variance of roughly 2.25). Fig. 2 shows a plot of the
size of the compressed filtered frame 75 as a function
of €, and its second derivative with respect to log(e).
The maximum of the second derivative occurs at
€=12, (Units on the vertical axis are normalized from
0to1).

For nearly-lossless MPEG-1 compression, both the
original and the filtered (at e=12) sequences were
then compressed using the MPEG video encoder from
the University of California at Berkeley. The bit rate,
and thus the quality of the compressed video is con-
trolled by three scale factors: the ISCALE, the
PSCALE, and the BSCALE, which determine the
effects of DCT quantization in I, P, and B frames
respectively. In all of our experiments, we used a
group of pictures size of 15 with the coding pattern of
IBBPBBPBBPBBPBB. Motion estimation was per-
formed in a [+15,-15] search range using logarithmic
search for the P-frames and "CROSS2" search for the
B-frames. Table 1 shows the improvements achieved
in nearly-lossless compression using SVD-based filter-
ing for various scale factors. At "low" bit rates (ie.
below 9.36 Mbits/s for 30 frames/s) the decompressed
frames in both sequences were very blocky, and there
was very little file size improvement between the origi-
nal and the filtered compressed sequences. This was
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Fig. 2 : Compressed size of filtered frame #75
vs €, and its second derivative.
Table 1

Improvement in output bit rates using
nearly-lossless MPEG and SVD-based filtering,

Quant. | Compression | Bit Rate

Scales | Improvement | at 30 fps

(LP,B) (Mbits/s)
1,1,1 16.01% 42.26
122 10.78% 24.72
13,3 6.50% 18.17
2,55 1.98% 11.47

expected, since in these cases the quantization error
from the compression algorithm is far greater than the
background noise we try to filter out. However, we
measured 0.36 dB improvement in SNR in the filtered
sequence. For bit rates between 18 Mbits/s and 42
Mbits/s, the quality of the compressed video was very
good and we measured a size improvement of 5-16%
between the original and the filtered compressed
sequences. At these rates, the average SNR improve-
ment was close to 1 dB.

To examine the effects of SVD-based filtering on a
video sequence with higher background notse, the ori-
ginal "football” video sequence was corrupted with
additive white noise of zero mean and o? = 32.58
variance. This noise level corresponds to a peak SNR
of 33 dB. After the noise estimation phase of the
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algorithm, we selected a new threshold €” 35.
Using again the Berkeley MPEG coder, Table 2 shows
the effects of SVD based filtering on the compressibil-
ity of the noise-corrupted video.

Table 2
Improvement in MPEG bit rates after
SVD-based filtering on noise-corrupted
"football” sequence.

Quant. | Compression | Bit Rate
Scales | Improvement | at 30 fps

(LP,B) (Mbits/s)
12,2 54.72% 36.41
1,33 56.89% 26.31
2,55 57.88% 15.21

Table 2 shows that the output bit rate increases with
the background noise level. However, SVD-based
filtering yields now close to 55% improvement in
MPEG-1 output bit rate. For comparison, we also
tested the performance of a 3x3 median filter. As
shown in Figs. 4-6, the median filter causes image
blurring and thus it is not suitable for our application
(notice the blurring of the letters in Fig. 5). In con-
trast, the SVD filter (sec Fig. 6) preserves edge details
and overall picture fidelity.

Fig. 3: Original frame #75 (one field)

4. CONCLUSIONS

We presented a novel noise filtering algorithm for
video sequences based on the theories of SVD and
data compression. Simulation results show that the
technique can effectively filter noisy images with no



Fig. 4: Frame #75 processed with a 3x3 median filter.

Fig. 5: Frame #75 processed with the SVD filter
and threshold € =12.

prior knowledge of either the signal or the noise
characteristics. This results in increased compressibil-
ity when the filtered data is subsequently processed by
a video compression scheme like MPEG. Experiments
have shown a 16% improvement in the compression
ratio achieved by nearly-lossless MPEG or
equivalently, a visual quality improvement of 1 dB at
the same rate. This scheme can be used in conjunction
with traditional motion-compensated temporal filtering
techniques to further improve the overall performance
of a high-quality video processing system.
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