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ABSTRACT

In this paper, we present an video objective quality
measure which has good correlation with subjective
tests. We then introduce the objective measure into
the design of an MPEG encoder. The new MPEG en-
coder extracts four features (bit rate, a feature that
measures blockiness, one that measures false edges, and
one that measures blurred edges) from the input and
output video sequences and feeds those features into
a four-layered back-propagation neural network which
has been trained by subjective testing. Then the sys-
tern uses a simple feedback technique to adjust the
GOP (group of pictures) bit-rate to achieve a constant
subjective quality output video sequence.

1. INTRODUCTION

Video quality measures play an important role in many
fields of video processing, especially in video coding.
The most widely used quality measure is mean squared
error, which does not correlate well with human visual
perception. Since a human observer is the end user
of most of the video information, a video quality mea-
sure that is based on human visual perception is more
appropriate for video quality prediction.

Miyahara’s [1] pioneering image quality assessment
system extracts five features from images. The first two
features refer to random errors with different weighting,
based on properties of perception. The third feature
refers to the end of block disturbances. The first two
features measure the structured errors, such as ringing,
induced by image structure. The feature dimension is
then reduced from five to three by a principal com-
ponent analysis. The correlation between subjective
scores and mean objective scores is 0.88. Webster et al.
[2] developed an objective video quality assessment sys-
tem that emulates human perception. Three features
are extracted from input and output video sequences.
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The first feature measures the spatial distortion. The
second and the third features both measure the tempo-
ral distortion. These features are combined in a linear
model by using least squares error criterion. The corre-
lation coefficient between the subjective scores and the
estimated scores was 0.92 for the training set. With the
testing set, the correlation coefficient was 0.94. Davies
et al. [3] proposed an automated image quality assess-
ment system for assessing image impairment. A bank
of spatial and temporal filters and a 3-layer neural net-
work are used to produce quantitative CCIR gradings
that match those made by an expert human assessor.
The network has 40 hidden units, and five output units
each representing one of the five CCIR, grades. It was
trained with 20,000 iterations.

In Miyahara’s systern, the principal component tech-
nique is useful when features in the feature space are
Jointly normal distributed. It is noted that using more
features results in excellent training, but poor testing
results. This is because redundant features will track
random errors (details) in the data during training.
The linear model proposed by Webster does not fit the
nonlinear relationship commonly observed between fea-
tures and mean opinion scores. Davies’s neural network
is complicated and requires a large training set.

In this paper, a four-layered, fully connected, back-
propagation neural network is trained by a subjective
test. This network has only four input, six hidden (four
for the first hidden layer, two for the second hidden
layer) and one output units. In Section 2, the subjec-
tive test experiments will be described. Objective qual-
ity measures are presented in Section 3. The constant
subjective quality MPEG encoder is shown in Section
4, followed by the conclusion in Section 5.

2. SUBJECTIVE TEST

In the subjective test, twelve video sequences contain-
ing scene changes, motion, details, lighting changes,
zooming and panning were coded using MPEG at dif-
ferent bit rates resulting in 46 video sequences. Thirty
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untrained subjects from Digital Signal Processing Lab-
oratory of Georgia Tech volunteered for the subjective
test. A procedure similar to CCIR Recommendation
500-3’s [4] high and low indirect anchoring with the
change from indirect to direct anchoring was chosen.

The video sequences (color) were 160 by 128 pixels
in size. Frame rate was 30 frames/second. The reason
for choosing small size is to save the disk space. They
were zoomed by two (i.e. 320x256 pixels) and displayed
on a Hitachi monitor. The Video sequences were pre-
sented in a random order. The Viewing distance was
six times the pictures height. A low ambient lighting
condition was used. The subjective test contained two
sections and each section did not last for more than 15
minutes.

A discrete quality scale is used in [1, 2, 3], but we
employed a continuous quality scale. There are several
reasons for choosing continuous quality scales. First,
the distances between quality levels on discrete scales
are not equal [5]. Averaging measurements from dis-
crete quality scales is suspect. Further, different coun-
tries or regions may impart different interpretations to
those scales [5]. Finally, it has a smaller quantization
effect.

3. DETERMINING OBJECTIVE QUALITY

The four features extracted from the input output video
sequernce pairs are:

Bit Rate : The bit rate as encoded in the MPEG bit-
stream, which is a crude overall indicator of the
video quality.

False Edges Effect [6] : False edges in the output
image are more dense than the corresponding edges
in the input image. The negative pixel values in
the difference of the input image processed by
a Sobel operator minus the output image pro-
cessed by the same operator indicate the pres-
ence of false edges. The standard deviation of
the negative pixel values is used as the feature.

Blocking Effect : This is a common coding artifact
with block coding. First, the sum of all Sobel
gradients at the block boundary and one pixel
next to the block boundary is computed for the
input and output frames separately. Then, the
feature is computed as the difference of these two
sums.

Blurred Edges Effect [6] : The edges 1n the input
image are more dense {(higher value) than the
corresponding edges in the output image. The
positive pixel values in the difference of the Sobel

input image minus Sobel output image again indi-
cate the presence of blurred edges. The standard
deviation of the positive pixel values is chosen as
the feature.

Each feature was computed on the Y frame, U frame,
and V frame. The feature was weighted as 1.0, 0.3,
and 0.3 on the Y frame, the U frame, and the V frame.
Those weightings were obtained by trying several weight-
ings and choose the one which had the best correlation
with the subjective data. The average value of the
features over all frames in the video sequence is used.
These features were used for linear regression or were
fed into a back-propagation neural network.

Linear regression uses least squares fitting to get re-
gression coefficients on training data. Back-propagation
neural network [7] (multi-layer perceptron) is a feedfor-
ward neural network, i.e. there are no feedback connec-
tions between its layers and the neurons of the layers
themselves. It consists of nonlinear neurons. The neu-
rons perform a weighted sum of their inputs (features)
and pass the sum through a sigmoid non-linearity.

A four-layered, fully connected, back-propagation
network is used. It consists of input, output and two
hidden layers. Each hidden and output unit has a bias.
In this experiment, four inputs, four units for the first
hidden, two units for the second hidden and, one out-
put units were used. The weights and offsets were ini-
tialized using small random values. The features and
mean opinion scores were normalized and the learning
rate was set at 0.1. It is noted that the error criterion
can not be very small. This is to prevent the network
from over learning (train), which would cause it to per-
form well on the training set but hurt performance on
the testing set. This neural network converged in 500
iterations during training.

Both linear regression and the back-propagation neu-
ral network used 50% of the video sequences (i.e. six
sets of MPEG encoded video sequences resulting in 23
video sequences) for training which were used to test
the other 50%. Then, interchanging the training and
testing sets, the procedures were repeated. The cor-
relation coefficient between mean opinion scores of 30
subjects on the 46 video sequences of linear regression
are 0.92 on the testing sets and 0.96 on the training
sets. The neural network has nonlinear mapping ca-
pability between features and mean opinion scores; its
correlation on testing and training video sequences are
0.95 and 0.98. Fig. 1 shows the results on test sets of
the linear regression and neural network.
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4. A CONSTANT SUBJECTIVE QUALITY
MPEG ENCODER

Our results on subjective quality were then used to im-
plement a constant subjective quality MPEG encoder.
Video can take advantage of variable bit rate (VBR)
operation because the activity in a video sequence is
variable. Since features are averaged over all frames,
it is reasonable to assume that the same quality mea-
sure can be applied to each Group Of Pictures (GOP,12
frames in our implementation.). The bit-rate control is
done on GOPs. For each desired subjective quality,
an approximation to the constant bit-rate encoding for
that quality is used as an initial guess. The bit-rate
is adjusted by examining the difference between the
current and desired objective qualities. This scale or
step_size is decreased as the iteration number increases,

i.e. scale/1 + log(iteration_number). The bit-rate change

is embedded in the quantizer_scale_code of the slice or
macroblock [8]. Fig. 2 shows the test results on a video
sequence which contains a scene change at GOP 9. All
GOPs converge to the desired quality in 3-6 iterations.

5. CONCLUSION

In this paper, we first present a video subjective qual-
ity measure with a nonlinear mapping between features
and mean opinion scores, a higher correlation coeffi-
cient, lower complexity and shorter training time than
previously reported. The good performance partially
comes from choosing a continuous subjective quality
scale. The continuous quality scale reduces quantiza-
tion effects and also simplifies the neural network struc-
ture.

We then introduce the video subjective quality mea-
sure into the design of an MPEG encoder resulting in
a constant subjective quality output video sequence.
A waveform coder, such as MPEG, has blocking ar-
tifacts, false edges, and blurred edges. For a general
coder, CCIR [9] recommends a list of picture (video)
quality degradation factors as: image blur, edge busy-
ness, false contouring, granular noise, “dirty window”
effect, movement blur, and jerkiness. These picture
(video) quality degradation factors can be used as pa-
rameters in video quality assessment techniques which
are similar to the case of the Diagnostic Acceptability
Measure in speech subjective quality assessment [10].

The proposed constant subjective quality MPEG
scheme can be implemented where low decoding com-
plexity is desired but encoding complexity is inconse-
quential. These asymmetric applications are those that
require frequent use of the decompression process, but
for which the compression process is performed once at

the production of the program, such as electronic pub-
lishing (education and training, travel guidance, video-
text), games and entertainment.
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Figure 1: (a) Correlation Coeficient of Linear Regres-
sion on Test Sets = 0.920245. (b) Correlation Coeffi-

cient of BP Neural Network on Test Sets = 0.950364.
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Figure 2: (a) Bit-Rate of Original (-) and Adjusted (..)

video sequences. (b) Subjective Quality of Original (-

) and Adjusted (..) video sequences. Values 5, 4, 3,

2, and 1 represent excellent, good, fair, poor, and bad

qualities, respectively.
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