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ABSTRACT

The human visual system seems to be capable of tempo-
rally integrating information in a video sequence in such
a way that the perceived spatial resolution of a sequence
appears much higher than the spatial resolution of an in-
dividual frame. This paper addresses how to utilize both
the spatial and temporal information present in an image
sequence to create a high-resolution video still. A novel
observation model based on motion compensated subsam-
pling is proposed for a video sequence. Since the recon-
struction problem is ill-posed, Bayesian restoration with an
edge-preserving prior image model is used to extract a high-
resolution video frame from a low-resolution sequence. Esti-
mates computed from an image sequence containing a cam-
era pan show dramatic improvement over bilinear, cubic B-
spline, and Bayesian single frame interpolations. Improved
definition is also shown for a video sequence containing ob-
jects moving with independent trajectories.

1. INTRODUCTION

Image interpolation techniques have been researched quite
extensively, with the zero-order hold, bilinear interpolation,
cubic B-spline interpolation [1], and regularization meth-
ods [2], [3] providing progressively more accurate solutions.
However, the quality of estimates generated by these meth-
ods is inherently limited by the number of constraints avail-
able within a single image. For this reason, multiframe
methods have been proposed which use the additional data
present within a sequence of temporally-correlated frames.

Multiframe image restoration was introduced by Tsai
and Huang [4]. Their motivation came from generating a
high-resolution frame from misregistered Landsat images.
Provided that enough frames are available with different
subpixel global displacements, their observation mapping
becomes invertible. If this is not the case, a least squares
approximation may be computed through a pseudoinverse
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of the constraint matrix. An extension of this algorithm
for noisy data was provided by Kim et al. [5)], resulting
in a weighted least squares algorithm. Stark and Oskoui
(6] formulated a projection onto convex sets (POCS) algo-
rithm to compute an estimate from observations obtained
by scanning or rotating an image with respect to the CCD
image acquisition sensor array. Tekalp et al. [7] extended
this POCS formulation to include sensor noise and later
time-varying motion blur [8].

In this research, the ill-posed inverse problem of interpo-
lation is placed into a Bayesian framework. The enhance-
ment algorithm incorporates several ideas which improve
the usability and quality of the estimated image frame.
First, independent object motion in the video sequence will
be assumed, rather than the simple cases of global displace-
ment or rotation assumed in previous multiframe methods.
Next, an edge-preserving image prior will be used to reg-
ularize the interpolation problem. This has the intent on
improving upon least squares and POCS solutions, which
typically contain smooth edges. Finally, the multiframe in-
terpolation algorithm proposed in this paper reduces to the
Bayesian method presented previously [3] when only a sin-
gle frame is available.

The paper will be organized as follows. Section 2 pro-
poses a novel observation model for a low-resolution video
sequence. The video frame enhancement algorithm is for-
mulated in a Bayesian framework in Section 3, including
a discontinuity-preserving prior model for the data and a
density for the modeling error. Simulation results are de-
scribed in Section 4 for a synthetically-generated sequence
containing camera panning and a real video sequence con-
taining objects moving independently. Section 5 provides a
brief summary of the research.

2. VIDEO OBSERVATION MODEL

The video frame enhancement problem is stated in this sec-
tion, and an observation model is proposed for a video se-
quence which includes motion compensated subsampling.

2.1. Problem Statement

The objective is to estimate a high-resolution frame, by
reconstructing the high-frequency components of the image
lost through undersampling the data. Assume that each
frame in a low-resolution image sequence contains N; x N»
square pixels. A lexicographical ordering of the I** frame
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results in the N1 N2 x 1 vector denoted as y‘¥. Consider a
low-resolution video subsequence

M-1 M-1
TR 7 (1)

where M represents an odd number of frames. A single
hiéh-resolution frame 2z(*) coincident with the center frame
y®) is to be estimated from the low-resolution subsequence.
This unknown high-resolution data consists of gN1 x ¢N»
square pixels, where ¢ is an integer-valued interpolation fac-
tor in both the horizontal and vertical directions. Thus, z(*)
is a ¢* N1 N2 x 1 lexicographically-ordered vector.

{y(l)} for 1=k~ ko R+

2.2. Center Frame Subsampling Model

Subsampling for the center frame is accomplished by aver-
aging a square block of high-resolution pixels,

g 7
P ) T
e r=qi—-q+1 s=qj—q+1
fori=1,...,N; and j=1,..., N2. This models the spa-
tial integration of light intensity over a square surface re-
gion performed by CCD image acquisition sensors [3]. The

center frame observation model is given as

y(k) — A(k'k)z(k), (3)

where A%%) ¢ RN1N2xa* NNz j5 the subsampling matrix.
Each row of A(%®) maps a square block of ¢ x ¢ high-
resolution samples into a single low-resolution pixel.

2.3. Motion Compensated Subsampling Model

The idea is to extract knowledge about the high-resolution
frame from the low-resolution frames. An exact model
is given as y(V = AGRZ(®) 4 w(W%) v [ £ k. The motion
compensated subsampling matrix models the subsampling
of the high-resolution frame and accounts for object motion
occurring between frames y") and y(®). For pixels in z{*
which are not observable in y(*), A("®) contains a column
of zeros. Object motion will also cause pixels to be present
in y(') which are not in z(¥). The vector u® accommo-
dates for these pixels with nonzero elements. Since u(**
is unknown, it is obviously difficult to utilize these nonzero
rows. Rows of A("*) containing useful information are those
for which elements of y(") are observed entirely from mo-
tion compensated elements of z(*). Write these useful rows

1 ,
as the reduced set of equations y’( "= AR Iy prac-
tice, the motion compensated subsampling matrix must be
estimated initially from the low-resolution frames; i.e., an

estimate A’“'k) must be computed from y¥) and y*). In

a1,k . - .
the construction of A" ), estimates of the subpixel motion

vectors between frames y(") and y*) are required, as well as
estimates of pixel locations which are not observable within
both frames simultaneously [9]. The relationship between
y® and z® for I # k is defined as

yl(') =Al(l,k)z(k)+n(l'k), (4)

where n(*'*) is an additive noise term representing the error

in estimating A" This noise is assumed to be indepen-
dent and identically distributed (i.i.d.) Gaussian.

3. VIDEO FRAME ENHANCEMENT

The problem of estimating the high-resolution frame *)
given the low-resolution subsequence {y(’)} is ill-posed in
the sense of Hadamard, since a number of solutions could
satisfy the model constraints. A well-posed problem will be
formulated using Bayesian maximum a posteriori (MAP)
estimation, resulting in a constrained optimization problem
with a unique minimum.

The MAP estimate is located at the maximum of the
posterior probability Pr(z(")| {y(')}). Equivalently, the es-
timate is computed as

25 = arg I;(i'))( {log Pr(z(k)) + log Pr({y(')} |z("))} 5)

through use of the log-likelihood function. Both the prior
image model and the conditional density will be defined.
Bayesian estimation distinguishes between possible so-
lutions through a prior image model. Commonly, an as-
sumption of global smoothness is made for the data, which
is incorporated into the estimation problem by a Gaussian
prior. The Huber-Markov random field (HMRF) model [3]
is a Gibbs prior which models piece-wise smooth data, given

1
Pr(z(k)) = %exp {—ﬁZpa(diz(k))}. (6)
ceC

In this expression, Z is a normalizing constant known as the
partition function, f is the “temperature” parameter, and ¢
is a local group of pixels contained within the set of all image
cliques C. The quantity diz(") is a spatial activity measure,
with a small value in smooth image regions and a large
value at edges. Four spatial activity measures are computed
at each pixel in the high-resolution image, implemented as
second-order finite differences [3]. The likelihood of edges
is controlled by the Huber edge penalty function [3],

palz) = { z, 2

2a|z| - o,

Izl <a, (7)
lz] > a,
where o is a threshold parameter controlling the size of
discontinuities modeled by the prior.

The conditional density models the error in estimating
A% Error is independent between frames, so that the
complete density may be written as

s g
Pr({y"} 1) = [ Pe(xR¥). @
z=k_M_2-1.
Since A(**) is known exactly,
&y _ J 1, for y(B) = AR
Pr(y 2 )—{ 0, otherwise. (9)

All other conditional densities are given by the zero-mean
i.i.d. Gaussian probability density

Pr(y1z) = (10)
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¥V 1 # k. Although the error variance o®? for each frame
is unknown, it is assumed to be proportional to the frame
index difference |l — k|.

The MAP estimate of the high-resolution data becomes

5(k) — i atz®
VA = ar min z
¢ e, { et

M—1
+§:2 ® (1,k) 2
+ ARy AT ) (11)
=k — M=
l#k
in which the solution is constrained to the set
Z= {z(k) : y(k) = A(k’k)z(k)}. (12)
Each frame has an associated parameter, A% = g/g{t%)"

(Y] ) .-
representing the confidence in A’( ). Since the objective

function is convex, a unique solution to the optimization
problem exists. The gradient projection algorithm [9] is
used to compute 2(*), with a zero-order hold of the center
frame, zgk) = qu(k'k)ty("), used as the initial condition.

4. SIMULATIONS

The Airport test sequence consists of seven high-resolution
frames. Diagonal panning of an airport scene was simulated
by extracting subimages from a digitized image, shifting
each successive frame seven vertical and seven horizontal
pixels. Each low-resolution frame y? was generated by av-
eraging 4 x 4 pixel blocks within each high-resolution frame
2" and then subsampling by a factor of ¢ = 4. The center
low-resolution frame y(*) was expanded using various single
and multiframe techniques. For the video frame enhance-
ment algorithm, subpixel motion vectors were estimated us-
ing a modified version of hierarchical block matching [10].
Table I provides a quantitative comparison of the estimates
by showing the improved signal-to-noise ratio,

2 2
Asnr = 10logy, ||2% = 289) /128 — 30| dB. (13)

In the Bayesian methods, linear estimates (o =oo0) and
nonlinear estimates (o = 1) were both computed to show
the improvement gained by the preservation of edges. In
this particular example it is known that only panning oc-
curs, so that the exact displacement vectors can be recov-
ered by averaging the estimated motion vector fields. This
results in a significant resolution improvement. Figure 1
depicts several enhanced Airport estimates.

The Mobile Calendar test sequence consists of seven
frames, composed of objects possessing fine detail. Within
the sequence, a wall calendar moves with subpixel transla-
tional motion, and a toy train engine moving with transla-
tional motion pushes a ball undergoing rotational motion.
Each high-resolution frame was subsampled by a factor of
g = 4 in the same manner as described for the Airport se-
quence. Table II shows quantitative results for various Mo-
bile Calendar frame interpolations, and Figure 2 shows de-
tails of the estimated frames in a region of the wall calen-
dar. Again, the video frame enhancement algorithm with

the Huber-Markov image model provides the best result,
although the resolution improvement is not as dramatic as
in the previous sequence.

5. CONCLUSION

An observation model was proposed for low-resolution video
frames, which models the subsampling of the unknown high-
resolution data and accounts for general object motion oc-
curring between frames. Simulation results from the video
frame enhancement algorithm were reported for sequences
containing global and general motion. In the case of camera
panning, definition was sigrificantly improved. More mod-
est improvements were visible for the sequence containing
objects moving with independent trajectories. In future re-
search, a robust regularization technique will be applied to
the ill-posed inverse problem of motion estimation.
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TABLE 1
COMPARISON OF INTERPOLATION METHODS ON THE SYNTHETIC Aérport SEQUENCE

Interpolation Technique | Asnr (dB)
Bilinear, M =1 0.57
Cubic B-Spline, M =1 1.25
MAP Estimation, M =1, a = 0 1.43
MAP Estimation, M =1, a =1 1.51
Video Frame Enhancement with Motion Estimates, M =7, a = oo, A(PF) = ﬁ 3.27
Video Frame Enhancement with Motion Estimates, M =7, o = 1, /\“ B = W 5.16
Video Frame Enhancement with Panning, M =7, a = co, A(V%) = 1°°° © 6.67
Video Frame Enhancement with Panning, M =7, o = 1, X{FF) = —-kl 6.96
TABLE II
COMPARISON OF INTERPOLATION METHODS ON THE Mobile Calendar SEQUENCE
Interpolation Technique | Asnr (dB)
Bilinear, M =1 0.24
Cubic B-Spline, M =1 0.72
MAP Estimation, M =1, a = © 0.82
MAP Estimation, M =1, a =1 1.05
Video Frame Enhancement with Motion Estimates, M = 7, ot = 0o, A(WF) = % 1.37
Video Frame Enhancement with Motion Estimates, M =7, a = 1, Al = W 2.11

Figure 1: Synthetic Airportsequence. Left-to-Right: High-resolution frame z{*); One of the low-resolution frames y*); MAP

estimator from [3], M =1, o = 1; Video frame enhancement with panning, M =7, a=1 A0 = |le01?|
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Figure 2: D(Lail\ of the Molile Calendar sequence. Left-to- Right: High-resolution frame z(*); One of the low-r=ohiion
frames y'*); MAP estimator from [3], M =1, o = 1; Video frame enhancement with motlon estimates, M =7, a =1,
pLUL - _
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