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ABSTRACT

We demonstrate the utility of a multiresolution ap-
proach for target detection in SAR imagery. Man-
made objects exhibit characteristic phase and ampli-
tude fluctuations as the image resolution is varied,
while natural terrain has a random signature. We
construct a number of detection strategies: an opti-
mal invariant multiresolution detector based on a de-
rived multiresolution increments process; and a gener-
alized likelihood ratio detector to differentiate between
a first-order autoregressive multiresolution increments
process and white noise. We show that these schemes
significantly outperform a standard energy detector
operating on the finest available SAR resolution.

1. INTRODUCTION

Many synthetic aperture radar (SAR) target detec-
tion algorithms work on a single resolution image at
the finest available resolution [4]. However, there is
compelling evidence to suggest that significant per-
formance gains can be achieved by casting the detec-
tion problem in a multiresolution setting. This per-
formance gain is a direct result of the coherent inter-
ference effects that occur in typical radar target sig-
natures as the imaging resolution is varied.

SAR images of man-made objects typically consist
of spatial patterns of bright points and lines resulting
from radar backscatter from discrete physical features
such as corners, edges, flat plates, etc. The coherent
radar return from each of these discrete features, or
prominent scatterers, is a complex phasor with ampli-
tude equal to the local radar cross-section of the target
feature. As the resolution changes from fine to coarse,
adjacent scatterers become lumped together into a sin-
gle resolution cell and coherently interfere with each
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other, leading to characteristic changes in amplitude
and phase as a function of resolution.

Figure 1 shows three collinear scatterers each of
equal amplitude and separated by a distance D. Also
shown are the amplitude and phase of a pixel located
at the origin, plotted as a function of resolution. One
can see that coherent interference effects cause the
pixel amplitude and phase to oscillate as the resolution
is varied from fine to coarse.

Natural terrain typically consists of a large collec-
tion of small amplitude scatterers that are randomly
distributed within each resolution cell. Thus SAR im-
agery of terrain, i.e., clutter, is frequently modeled as
a Gaussian random field by appealing to the law of
large numbers {7]. The result is that the amplitude
and phase of a clutter pixel vary randomly as a func-
tion of resolution.

2. MULTIRESOLUTION PROCESS
STATISTICS

In our construction, we model the scene c(z), z €
IR? as a collection of point scatterers, in which each
point scatterer is specified by its location z, € R? and
complex reflectivity u; € C:

K
c(z) =D wd(z — ). (1)
k=1

This approach has been used to model both clutter
and objects that consist of collections of point reflec-
tors [7, and references therein] (i.e., trihedrals or cor-
ner reflectors). We refer to ¢ as the complex reflectiv-
ity function.

The complex-valued SAR image, T'(z;p), taking
into account resolution, can be written as a convo-
lution between the complex reflectivity function, ¢(z),
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and the system impulse response, h(z), (8]:

T = 1 [ e(yh (5—;2) iy @

In the next two sections, we consider models for the
statistics of the observed radar image, T, under simple
assumptions on the statistics of the scatterer locations
{z,} and their complex reflectivities {ux}.

2.1. Case 1: Natural Clutter

For natural terrain, i.e., clutter, a typical assumption
is that each resolution cell in the SAR image con-
tains a large number of small amplitude scatterers.
In this case, we will assume that the complex reflec-
tivities {ui} are independent, identically distributed
(iid) random variables with mean zero and covariance
021 where I is the identity matrix.

Using a slight generalization of a result in [7], we
can invoke the Generalized Multivariate Central Limit
Theorem [1] to show that the joint density of T'(z; p)
converges to multivariate Gaussian as the number of
scatterers K tends to infinity. in both space and reso-
lution. The mean of the process is 0 and the covariance
is

E{T(z;p)T*(z';¢")} = R(z,2'; 0, /)

Y

where R(z,z’; p, p') is the correlation function of T'(z, p),

and o, is the variance of the iid complex reflectivities
{ux}. Note that the covariance function is completely
specified by the variance o. and the impulse response
h(z).

If the impulse response is chosen so that the corre-
lation function R satisfies a scaling law condition [9]
with respect to resolution, then the process T(z;p)
is Gauss-Markov in resolution. For p; < p < p, the
scaling law is

Rg_o(Pl s P)Rgo (p: pu)
Rio(p, P)

Rz (o1, pu) = (4)

where R, (p, p') = R(Zo, Zo; £, F)-

For the special case where either the impulse re-
sponse h(z) is a sinc(z) or a rect(z), the scaling rela-
tion is satisfied. The correlation of T(zy; p) becomes
Ry (p,p') = 0% /maz{p, p'} with variance o? = ¢2/p.

T'(z; p) can also be shown to have independent in-
crements in resolution — i.e.

E{[T(Em Pl) - T(EOJ p2)][T(£0r P2) - T(-‘EO) PB)]‘} 2(5())

for p1 > p2 > p3, . In this case, the clutter process
T(z,, p) is a Brownian motion process when viewed as
a function of 2 [5].

The Brownian motion nature of T in resolution can
be exploited to provide a simple linear transformation
of the process which whitens the process in resolution.
Choose a set of resolutions p; < ... < p; < pig1 <
... < pNn where piy1 = pi+6ép;. An increments process
in resolution is formed by

T'(zo; pi) = T(zo; pi + 8pi) — T(zo; )  (6)

with dp; > 0. This process has zero mean and is inde-
pendent from resolution to resolution.

By judiciously choosing the resolutions {p;}, so that
-pl—'_ - ;aaIT = 4 for every 1, the variance of the difference
process T’ is constant from resolution to resolution.
We define the vector of resolution increments

Ilgo = {TI(£0,91)7"'rT,(§01pN~1)}t (7)

where t denotes vector transpose. Then ZEO has dis-
tribution Ty~ N.(0,702I) where N(p,T) denotes
a circular complex Gaussian density with mean g and
complex covariance £. Here the symbol ~ is short-
hand notation for the phrase “has probability distri-
bution.”

2.2. Case 2: Statistics of Cultural Objects

Many man-made or cultural objects typically consist
of a small number of large amplitude point scatterers.
The number of local prominent scatterers we wish to
examine are typically less than eight. Larger numbers
tend to make the SAR signature exhibit zero mean
complex Gaussian statistics [3].

We will reformulate the process to have a random
and nonrandom component. The point scatterer model
will become

K K’
o(z) =) ud(z —z) + ) axblz—z,). (8)
k=1 k=1

The first term in Equation 8 will correspond to the
clutter model as outlined in Case 1. The second term
will correspond to an unknown set of prominent scat-
terers. The complex reflectivities {ax} are determin-
istic but unknown. The spatial distribution of the
prominant scatterers is also assumed to be determin-
istic but unknown. T'(z; p) will be multivariate Gaus-
sian with covariance as in Case 1 (Eq. 3). The mean
of the process is

E{T(z;p)} = %iakh (E;E")- 9

k=1

Fo N Bl )



In the same spirit as Case 1, we form a vector of
increments in resolution, T, T' This process is complex

Gaussian with dlstrlbutlon L, ~ Ne (p vo2I) where

p={p1,. i uN-)

3. DETECTION STRATEGIES

We will base our detection strategies on the increments
process T"(z; p). Our detection strategies will exploit
information provided by resolution. This information
is, in fact, produced by the local spatial signature as it
is incorporated into the resolution process. The above
developments motivate detectors which exploit the dif-
ference in the mean when either clutter or cultural ob-
jects are present. For a given spatial location z;,the
hypotheses under test will be

Hy : EEONNC(E’Z&:)’ b= 0
Hy: T, ~NogEa), p#0

with T, = yoZ1. We have available T, J=1. oM
which are surrounding locations assumed to be clutter

We have chosen the composite test due to the se-
vere variability of SAR signatures when collection ge-
ometry and object condition are not known. This is
opposed to choosing a specific object signature and de-
signing a matched filter to it. There does not exist a
uniformly most powerful test for the above composite
hypothesis. The optimal invariant test with respect to
scale and orthogonal transformations is the so-called
F test [2] which is equivalent to

IE_WZ': 12 _ N-1 T (2o; p3)|? H:
N1 & (N-1)ye? p

) (10)

where 42 is the estimate of 62 from surrounding cells

assuming no target is present, i.e.,

~2 2 ZJ 1|T —le!)l .

Y1(zo) =

G = M(N-1) (11)
where z,,...,2Z,, are locations within clutter. The
distribution of the test statistic is ¥1(zy) ~ F(2(N —

1),2M (N - 1)) under Hy, and ¥1(zy) ~ F(2(N -

1),2M(N-1); Efv (#2/~0?)) under H;. Here F(m,n)
is the central F dlst.nbutlon with m and n degrees of
freedom, and F(m,n;n) is the noncentral F distribu-
tion with the same degrees of freedom and noncen-
tricity parameter 1. For the case of large M (N — 1),
the estimate of 62 is almost exact. The distributions
become a scaled central chi-square under Hg and a
scaled non-central chi-square under H;.

An alternative detection strategy can be motivated
by noting the oscillatory behavior in the signature of
Figure 1. We now construct a generalized likelihood
ratio test (GLRT) for the hypotheses

Ho: T'(zo;50)) = &
Hy: T'(zo;05) = aT'(zg;pi-1)+ ¢

where ¢; ~ N:(0,702). We are now testing between
a white noise process and a first order autoregressive
(AR) process in resolution. The GLRT is developed
through the inclusion of the maximum likelihood es-
timates of the AR coefficient a and o2 [1]. Assuming
M >> N, the GLRT is approximated as

, 2
da(zs) IZ'{izT’(?_Zo;Pi)T‘(Q_o;Pi—I) H, 5. (12)
2(Zo) = - - > B.
° 523N, IT (203 piz1) 2

Our baseline test with which we compare the mul-
tiresolution test performance is an F test applied to
single resolution SAR image data at the finest resolu-
tion. This test is

I (_prN)I

c

Y3(zo) = > B (13)
This test has been used extensively in initial screening
algorithms on SAR data[6]. The distribution of this
test is the same as ¥;(z,) with M =1, N = 2, and
noncentricity parameter n = |E{T(zy; pw)|H1}|2/o2.

We tested these detection strategies on a data set
which consisted of 17 Synthetic Radar Imaging Model
(SRIM) images of a Howitzer, each at a multiple of 20°
aspect angle embedded in zero mean circular complex
Gaussian clutter with o2 chosen such that the Target-
to-clutter ratio was 0dB. The resolution of this simu-
lation is 1 foot. Figure 2 shows the Receiver Operating
Characteristic of these tests when applied to this data
set. Noted in the Figure is the test, finest/coarsest
resolutions, and number of resolutions used. The mul-
tiresolution F-test performed the best in this study.
Also note that the multiresolution F-test using 2 foot
data as its finest resolution performed as well as or
better than the single resolution F-test at 1 foot res-
olution.

4. CONCLUSION

In this paper we derived the statistics for multireso-
lution SAR signatures. For the clutter case we ap-
pealed to the Generalized Central Limit Theorem to
show that the clutter statistics are complex Gaussian.
In addition, we showed that under certain aperture
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weighting conditions, the clutter process in resolution
becomes Brownian motion. The Brownian motion
process was exploited to simplify the clutter statis-
tics by forming an increments process and by choos-
ing the resolutions to equalize the clutter variance.
A target model was presented where a deterministic
but unknown set of point scatterers were added to the
marked point process clutter model. Two multireso-
lution detection strategies are proposed to detect cul-
tural objects whereby the mean value of the objects
is not assumed known. An optimal invariant test and
a test for autoregressive behavior were explored and
found to outperform a simple fine resolution energy
detector.
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Figure 1: A 1-D Cut Through the Three-Scatterer
Signal and Multiresolution Amplitude and Phase
Fluctuations.
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Figure 2: Empirical dctc%tion results for the
three detection strategies on synthetic data



