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ABSTRACT

This paper examines the modeling of synthetic aper-
ture radar (SAR) phase histories with 2-D damped
exponential models of low order. The use of a low
order model is warranted when the radar returns
are attributable to a small number of point scatter-
ers. In this paper we show that the fit of the widely
used damped exponential model is highly depen-
dent on the image scene. Specifically, current high
resolution methods have limited applicability due to
mismatch between the assumed model and observed
data.

1. Damped Exponential Model

The 2-D damped exponential model has been suc-
cessfully applied to array processing and radar prob-
lems [8]. In a slight extension of this model we con-
sider damped exponentials in the presence of un-
modeled dynamics and noise. The data are of the
form w(my, my), where 0 < m; < M; — 1, and
0 < myg < My — 1. They have a 2-D harmonic
structure:

p
w(my, mz) = Y s A7 +n(my,my). (1)

i=1

Here p is the number of harmonics (scatters) and
n(my, m2) is due to unmodeled dynamics and noise.
FEach 2-D harmonic is characterized by two complex
parameters, A; for the first dimension, and «;, for
the second dimension. A; and +; are not restricted
to lie on the unit circle, thus allowing for damped
exponential signals. The complex number s; is the
amplitude of the i** 2-D harmonic signal. For this
paper the parameters of the model are treated as
deterministic. Representing equation 1 in matrix
form we have W, an M; x M,-dimensional matrix
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whose (my, m2)** element is w(m;, m,). Then
W = GSHT + N, (2)
where
G=[h; hy hy ], h; = Wn(N),
S =diag{[s; 52 --- 5]},
H=[g, g, 9,1,9: = Y (),
and

Va(z) =[1 z 22 2417
N is the M; x M, dimensional matrix whose
(m1,ma)* element is n(m;, my).

We can apply this model to synthetic aperture
radar (SAR) problems where the M| x M, focused
image, X, and phase history, W, are represented as
a discrete Fourier transform (DFT) pair [6] by

X = Dy, WD}, 3)

where Djs is the normalized DFT matrix with
(k,1)** element e~7 %% /\/M, 0 < k,1 <M-1

Electromagnetic phenomenology often dictates
that the phase histories are comprised of a small
number of damped exponentials due to point scat-
terers 2, 4, 7). To bound the performance of param-
eter estimation schemes one might consider other
low rank models whose errors are easily calculated.
To this end we consider both a generalization of and
a restriction on the model of 2.

2. Error Bounds
A measure of the error between the phase histories
W, and the estimated model, W, is given by

e = ||Ellr =W - W]|p. (4)

Consider the nonlinear least squares (NLS) problem
of minimizing equation 4 with respect to W. Its so-
lution is equivalent to the deterministic maximum
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likelihood (ML) estimate in the case where N is due
only to white Gaussian noise. Even in the case of
ARMA noise minimization of 4 yields an asymptot-
ically statistically efficient estimate for undamped
modes [10}. In the following section we show how
the minimum error damped exponential solution to
equation 4 is bounded.

2.1. Low Rank Approximation

A general low rank decomposition of the M; x M,
dimensional matrix, W, is

W=W,+E, (5)

where W), is rank-p and E is a residual matrix. Of
course the best approximation of order p is found
by using by the SVD of W : W = USV™. Here the
approximated matrix, W, can be assembled from
rank-p versions of the SVD component matrices as

W:U(l 2, )E(l:p, 1:pV(1:p,))"  (6)

where ¥ contains the p largest singular values, the
p columns of U are their left singular vectors, and
the p columns of V* are their right singular vec-
tors. Thus the rank-p SVD approximation provides
a lower bound on the error of all other rank-p ap-
proximations in the form of equation 5. The error
attained by the rank-p SVD approximation is given
by

min (M;,M>)

Z o} 2 0ps1. (7)

i=p+1

esvp = ||Esvpllr =

2.2. [Exponential Approximation

Now consider the rank-p model of equation 2. Since
this is a restriction on equation 5 this limits the
accuracy of our rank-p approximation. Its error is
no better than that of equation 7. Thus €damp >
ESVD-. -

2.3. DFT Frequency Approximation

Now consider a further restriction of equation 2
where X;, and 7; can take on only discrete val-
ues. Specifically, X; € {¢’ o :’:‘0_ Land y; €
{¢ "‘%I}ﬁ_{f,_l. Observe from equations 3 and 4 that
the minimum is attained by selecting the p values
of X' with largest moduli. As before this represents
a restriction to the damped exponential model. So
it is not surprising that corresponding errors satisfy
€DFT 2 €damp > €SV D.

3. Model Fitting

A set of SAR data was collected to determine the
fit of the low rank approximations discussed in sec-
tion 2. The SAR data was produced by XPATCH
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Figure 2: Representation Error vs. Model Order

software [1]. Normalized error between an estimated
model and the phase history was calculated as

S W =W @

IWllr
The error bounds given by the SVD and the
DFT were established for this data. These repre-
sent lower and upper bounds, respectively, between
which we would expect any reasonable approxima-
tion method to perform.

Two parametric methods that estimate the
damped 2-D exponential model, 2-D IQML {3], and
2-D MODE [5], and a Fourier based method, RE-
LAX were then tested.

The RELAX algorithm is a robust algorithm for
estimating 2-D undamped sinusoidal parameters by
minimizing the cost function in (4) with a relaxation
process.
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The steps of the RELAX algorithm may be briefly
summarized as follows:
Step 1: Assume that there is one 2-D complex sinu-
soid in the SAR phase history data. The frequency
estimate of the sinusoid is obtained as the location
of the dominant peak of the 2-D periodogram, which
can be efficiently computed by using FFT with the
data matrix padded with zeros. (Note that padding
with zeros is necessary to determine the frequency
estimate with high accuracy.) Then the complex
amplitude of sinusoid is computed from the com-
plex height of the peak of the 2-D FFT of the data
matrix. .
Step 2: Assume that there are two 2-D complex
sinusoids in the SAR phase history data. The cor-
rected SAR phase history data is obtained by sub-
tracting from the SAR phase history data the first
sinusoid estimated in Step 1. The parameters of the
second sinusoid are obtained similarly from the cor-
rected SAR phase history data as described in Step
1. Then the parameters of the first sinusoid are re-
determined from the data obtained by subtracting
from the SAR phase history data the estimated sec-
ond sinusoid. This process is iterated until the NLS
cost function is minimized.
Step 3: Assume that there are three 2-D complex
sinusoids in the SAR phase history data. The cor-
rected SAR phase history data is obtained by sub-
tracting from the SAR phase history data the first
and second sinusoids estimated in Step 2. The pa-
rameters of the third sinusoid are obtained similarly
from the corrected SAR phase history data as de-
scribed in Step 1. Then the parameters of the first
sinusoid are redetermined from the data obtained
by subtracting from the SAR phase history data the
estimated second and third sinusoids. This process
is iterated until the NLS cost function is minimized.

The remaining steps are similar and the RELAX .

algorithm stops when the desired or estimated num-
ber of sinusoids or dominant scatterers of the target
is reached.

Results for images shown in Figures 1 and 3 are
plotted in Figures 2 and 4. The locations of the
scatters identified by each algorithm are shown in
Figures 5, 6, and 7.

4. Discussion

If the correct model order is used the SVD error
provides a lower bound on the error in fitting the
exponential model. Observe in Figures 2 and 4 that
none of the parametric methods approached this
bound. Either the data contains unmodeled signal
(non-exponential), or the algorithms are producing
poor estimates, or both. Additionally, 2-D IQML,
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and 2-D MODE did not perform better than the
DFT constrained method. For the images in Fig-
ures 1 and 3 these methods attained a local mini-
mum or did not minimize 4. As these methods are
known to work well for the case of sinusoids in white
noise, we can only conclude that clutter and/or col-
ored noise are adversely affecting their performance.
In Figures 5, 6, and 7 of the scatter pixel locations
we see that all methods locate the major scatter in
the image. In the case of 2-D MODE the remaining
poles model residual energy from the sidelobes of
this scatter. In the case of 2-D IQML only distinct
poles are selected in the second dimension which is
a characteristic of the method.

For this data the RELAX method is more ro-
bust than 2-D IQML and 2-D MODE. The RE-
LAX method starts with the DFT and then attains
greater resolution by exploiting knowledge of the
form of the signal. Subsequently, it performs bet-
ter than the DFT bound and successfully locates
the two major scatters in the image. As in the case
of 2-D MODE the remaining poles model residual

energy from the sidelobes of these scatters.

The results of this paper are based on image data
for which the true signal content was not known.
Thus the number of scatters that could be mod-
eled as exponentials was unknown. We have used
mean square error to identify how well the models
fit the data. However, since the data may also con-
tain clutter which is not well modeled by a small
number of damped exponentials the lower perfor-
mance bound of the SVD model may not be attain-
able with a purely exponential model. Therefore we
hypothesize that a model which allows for colored
noise may provide better results.

The authors gratefully acknowledge the helpful
discussions with P. Stoica.
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