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ABSTRACT

This research addresses the frequency multiplex-
ing of multidimensional signals, having different band-
widths or defined on different lattices, with perfect or
near perfect reconstruction i.e. zero or low crosstalk
between signals and zero or low distortion of individ-
ual signals.

The paper discusses important issues such as: what
are the valid modulating frequencies, how to manage
quadrature modulation, what are the conditions for
perfect reconstruction, how many signals can be trans-
mitted perfectly, when and why linear periodically time-
varying (LPTV) filters must be used in the system,
structure of filters to preserve compatibility with con-
ventional frequency multiplexers and design procedures.

1. INTRODUCTION

The application initially motivating this work is color
television (NTSC and PAL) where the luminance com-
ponent is frequency multiplexed with the quadrature
modulated chrominance components. Existing systems
have problems of crosstalk between the luminance and
chrominance signals. The poor separation of signals
leads to two annoying distortions: cross color (a rain-
bow pattern in parts of the image with high horizontal
luminance, such as a referee’s shirt) and cross lumi-
nance (the most serious problem with the comb filter
receivers). Some recent methods [1] allow better man-
agement of the video spectrum by using multidimen-
sional filters. However they still have a trade-off to
make between the loss of resolution if low order filters
are used (guard bands to keep) and ringing due to high
order sharp filters (which are also expensive). Though
not very objectionable on small TV sets, these arti-
facts become highly disturbing on large screen TV sets
which have gained a lot of popularity in recent years.
There is a definite need for an advanced NTSC system
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in which picture quality is improved while maintaining
compatibility with all existing decoders.

Although the television problem is fairly specific, in-
volving the multiplexing of three signals in two or three
dimensions, our theory has been extended to a gen-
eral theory of multi-D perfect reconstruction frequency
multiplexing. Some parallels have been made between
1D transmultiplexers for M signals having equal band-
widths and subband coders [2]. But, there has been no
complete study of multi-D transmultiplexers for sig-
nals defined on arbitrary lattices with the property of
perfect reconstruction. Some practical considerations
that are very important for multiplexers don’t arise
in subband coding [3] [4]. For instance, quadrature
modulation which allows two signals to share the same
frequency band would mean having two filters with the
same passband in subband coding (usually they all have
distinct passbands). Transmultiplexers must also con-
sider modulating frequencies for signals; they must be
carefully chosen for multi-D signals defined on arbi-
trary lattices. Conditions for compatibility with con-
ventional multiplexers is also a concern that doesn’t
arise in subband coding. These practical issues, and
others, motivate a serious study of transmultiplexers
by themselves (and not just as dual problems of sub-
band coding).

2. TRANSMULTIPLEXER DESCRIPTION

The proposed transmultiplexer system is shown in Fig.
1. The encoder starts with M signals critically sam-
pled on their lattices A; (in close relation with their
bandwidth). U;(z*:) is the z-transform of u;(x) de-
fined for x € A; as follows : U;(z) = Doxen, w(x)z™X
with zX = J] 27*. This notation gives the information
of the sampling lattice geometry which is not given
in the conventional z-transform. FEach signal is then
pre-modulated such that its spectrum will be centered
at the desired modulating frequency f.,. This is done
by multiplying each u;(x) by cos(27rfg:x). They are
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then upsampled to a common lattice I' (for which each
A; C T') which acts as a transmission space lattice. The
upsampling operation keeps the samples on A; intact
and inserts zeros for samples on T\ A;. Signals are fi-
nally filtered by LPTV filters 7; and added together to
form the composite transmitted signal C(z'). Each F;
acts in two ways. First it is an interpolator because it
generates samples in I’ from signal Sy,(z") = S;(z%*)
which is really defined on A;, but in a manner that
the original signal will be recoverable even when mixed
with others. Second, it acts as a passband filter by
keeping only one replica (or two in case of quadrature
modulation) in frequency of S,,(z"). The LTI filters
F;;(2") making up the LPTV filter F; in Fig. 2 must
have approximately the same frequency response for
frequency domain multiplexing behavior of the system.
At reception, the decoder filters the composite signal
through the LPTV filters H;, which act as decimators
(with about same frequency responses as their associ-
ated F;), and downsamples to the original lattices A;.
Signals are then post-modulated to cancel the effect of
pre-modulation and to finally obtain estimates of the
initial signals.

The actual inputs and outputs of the transmulti-
plexer are the S;(z*') and the S;(z%¢) respectively.
Pre-modulation and post-modulation serve only to shift
the spectra before transmission and after reception.
The performance of the system depends on the sub-
system from S;(z%¢) to S;(z).

3. CONDITIONS FOR PERFECT
RECONSTRUCTION

The questions of interest now are : “When is it possible
to get a perfect reconstruction system?” and “How can
it be achieved?”. To answer these questions, we con-
sider the sub-system from Si(z*) to 5i(z%*). A ma-
trix representation of that sub-system can be derived.
For it, all signals must be broken up into sub-signals
over cosets on a common lattice, chosen as the inter-
section A = N, A;. Then for each coset, the use of
distinct transmission filters and reception filters must
be considered. This is like considering each coset of
a signal as a different sub-signal to transmit and re-
Each signal “i” is broken up in K; = :( /\\‘ 5
such sub-signals. This explains the relatively complex
structures of LPTV filters F; and H; shown in Fig. 2.
Each filter Fj;(2") in that figure (because of its sur-
rounding downsampler, upsampler and shifts z% and
z~3ii) assumes the transmission of a different coset (or
sub-signal) A + a;; of A;. On the other hand, each fil-
ter H;;(z') assumes the reception of a different coset

ceive.

A + a;; of A;. Define:
d(a)

Ki = (A:d)= g (1)
A o= U (A+ay) (2
A o 9

N = { .A)—m 3)

I = ULi(A+g) (4)
N

Fy(eh) = 3 2% Fy(a") (5)
z;

H,,m(zr) = Zz_ck—am"Hmnk(zA) (6)
k=1

where f,'j((x) = fij (x—c;—a,-j), forx € A and hmnk(x) =
hmn(x+cr+amn), x € A. We also define vector S(zA)
and matrices E(z*) and R(z") in the following manner:

SElsey = S0
[E(zA)]E;:x o Hupni(z*) (8)
[R(ZA)]]‘;,E;;: Ki+j Ejk(zA) (9)

From that an equivalent multi-input multi-output
systemn, shown in Fig. 3, can be obtained. In that fig-
ure, Six(z") represents the kth coset of signal i. Each
column of matrix R(z*) (row of E(z*)) contains the
complete information (by using the given polyphase de-
compostitions in (5) and (6) plus definitions in (8) and
(9)) about a transmission (reception) filter Fy;(z") (or
H;;(z")) corresponding to a given coset of a signal. A
matrix representation of that system is as follows :

S(z*) = E(z")R(z")S(z") (10)
The matrix condition for perfect reconstruction is :
E(zMR(z") =1 (11)

We usually are interested in FIR analysis/synthesis fil-
ter banks. We define the ring of FIR filters (causal and
non-causal) over a lattice A as :

Ap(z*) = {A@E) = 3 a(x)7* | a(x) € F,

XeA

a(x) =0 except for finitely many terms} (12)

where F' is a field (which is usually chosen as the com-
plex field for filters). The condition for perfect recon-
struction implies that E(z*) and R(z%) must be uni-
modular. It follows that using LTI filters when a signal
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has many cosets would constrain columns of R(z*) and
rows of E(z") sometimes making perfect reconstruc-
tion impossible; this is why LPTV filters must be used.
Since any product of elementary matrices is unimodu-
lar, solutions to (11) (infinitely many) are guaranteed
to exist.

From the study of ranks of matrices R(z%) and
E(z*), the dimensionality constraint on the number
of signals that can be perfectly multiplexed is:

M
> d(A}) <d(T™) (13)
i=1

This condition is the same as for time multiplexing.

4. OBJECTIVE FILTERS AND
PRACTICAL CONSIDERATIONS

In general we are interested in transmultiplexers that
behave like a frequency multiplexer. In the application
to NTSC, this is to maintain compatibility with con-
ventional systems, i.e. existing TV sets should obtain
acceptable pictures from a new transmultiplexer en-
coder while the new decoder would yield higher quality
pictures. The transmultiplexer must thus possess some
desired properties besides perfect reconstruction. For
theory and design, we consider filters of the following
form as objectives (i.e. very desirable but not an abso-
lute must) for transmission and reception respectively:

fij(x) = b,-j(x)cos[27rf7,‘(x -—d,)-——'——- (14)

hg(x) = pkz(x)cos[27rfT(x —e ZkT

- =1 (19)

where b;;(x) and pgi(x) are lowpass filters (usually hav-
ing linear phase), %d,- and %ek are their corresponding
spatial (or spatiotemporal) centers, m; and n; are their
modulation phases (integers). The £, are the mod-
ulating frequencies of-each signal. Con51der1ng per-
fect reconstruction from S;(zA+) to S;(z%¢), we have
Ui(z™) = cos?(2nfIx)U;(2). For perfect reconstruc-
tion of the global system we need cos?(2rffx) = 1,vx
€ A; implying that 2f.; € A} (which we denote f,, €
$A7). Modulating frequenc1es are thus restricted.

Such filters ensure compatibility with existing sys-
tems since it can be proved that the system of Fig.1
with filters of the given forms behave like a conven-
tional frequency multiplexer. When two signals pos-
sess the same sampling lattice, they are modulated in
quadrature (i.e. they share the same band). Impor-
tant theoretical results have been obtained for such
signals (having A; = Ag, £, = f € $AJ\il™" ; note
that a modulating frequency in F* permits the pres-
ence of only one signal). For good recovery of signals,

n; = —m; and e; = —d; must be chosen. These con-
ditions arise whether or not quadrature modulation is
used. For good separation of signals “i” and “k” mod-
ulated in quadrature, m; + n; odd and d; = —e; must
be chosen.

This leads to necessary sets of conditions on filters
to permit perfect reconstruction multiplexing. Further-
more, crosstalk between guadrature modulated signals
is identical to zero if d; € 2T and f., € ;T\ 3I'* (which
is what digital NTSC does).

5. DESIGN PROCEDURES

For the design of filter banks, we consider the mini-
mization of a cost function depending on transmission
and reception filters (of given orders) without any con-
straint. The optimization procedure is carried out in
two steps. In the first one, we optimize filters for fre-
quency response to be as close as possible as to the
ones of the desired objective filters of equations (14)
and (15) by using the procedure described by Lam-
propoulos and Fahmy [5]. They proved the problem to
be convex and thus yielding a unique solution. In the
second step, starting from the optimal frequency point
(i.e. highly desirable filters), we add weight for perfect
reconstruction error (which is not a convex problem
since there are infinitely many solutions) to the previ-
ous cost function to find a near perfect reconstruction
solution in the neighborhood of this starting point.

The software package to design transmultiplexers
for 2-D and 3-D lattices has been written and tested. It
will now be tested on 2-D and 3-D multiplexing schemes
for NTSC video.

6. REFERENCES

[1] E. Dubois and W. F. Schreiber, “Improvements
to NTSC by Multidimensional Flltermg,” SMPTE
Journal, vol. 97, pp. 446-463, Jun. 1988.

[2] R. D. Koilpillai, T. Q. Nguyen, and P. P.
Vaidyanathan, “Some Results in the Theory of
Crosstalk-Free Transmultiplexers,” IEEE Trans.
Signal Processing, vol. 39, pp. 2174-83, Oct. 1991.

[3] P. Vaidyanathan, Multirate Systems And Filter
Banks. PTR Prentice Hall, 1993.

[4] E. Viscito and J. Allebach, “The Analysis and De-
sign of Multidimensional FIR Perfect Reconstruc-
tion Filter Banks for Arbitrary Sampling Lattices,”
{g’gElE Trans. Circuits Syst., vol. 38, pp. 29-41, Jan.

[5] G. A. Lampropoulos and M. M. Fahmy, “A New
Technique for the Design of Two-Dimensional FIR

and IIR Filters,” IEEE Trans. Acoust. Speech Sig-
nal Proc., vol. 33 pp- 268-280, Feb. 1985.

2139



s

—

( A
U@ o S ] Sy [ 186D [CED | Tr18E0 ] 8 G
AT ! ! r—n
cos(2nf:lx) cos(2nf:1x)
U@ S [iram] Sz 5 ]Sxz") T 15420 ] S() U™
AT 2 2 St
cos(2nf:2x) cos(2nf:2x)
[ 1 ] ] [ 1 1]
A A
U™ o S 2™ [Yram] Sulzh) Sy (z") Se@D) [iraw] Sz U, (z*)
M M F M H M
Ay—T M M r— Ay
cos(2xf! x) cos(2x £l x)
. ) Synthesis filters | Analysis filters i )
Encoder Decoder

Figure 1: Multi-D Transmultiplexer system for M signals defined on arbitrary lattices
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Figure 2: Structure of LPTV analysis/synthesis filters
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