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Abstract— A least-squares technique is pre-
sented for designing quarter-plane separable-
denominator 2-D IIR filters to best approximate
prescribed frequency domain (FD) specification.
It is shown that the FD error vector is linearly re-
lated to the 2-D numerator coefficients whereas
the relationship with the 2-D denominators is
quasi-linear. Furthermore, the numerator and de-
nominator estimation problems are theoretically
decoupled. The quasi-linear relationship is used to
formulate an algorithm for iterative estimation of
the denominator. The numerator is found in one
step using the estimated denominator. Computer
simulations show the effectiveness of the proposed
method and its superior performance compared to
several existing methods.

I. Introduction

Design of 2-D digital IIR filters from arbitrary frequency
domain specifications is a highly nonlinear optimization
problem [1-10], which can not be accomplished using clas-
sical techniques. Existing designs make use of varia-
tions of general nonlinear optimization methods, such as
Newton-Raphson or Fletcher-Powell or linear program-
ming to meet the prescribed design specifications [3, 4,
6-8]. But these general methods are computationally in-
tensive, sensitive to the choice of initial estimates and may
take large number of iterations. Also, none of these meth-
ods make use of the underlying matrix-structure inherent
in the 2-D filter design problem. For Spatial Domain de-
signs, it has been shown by several researchers (includ-
ing the second author) that appropriate utilization of the
underlying matrix structures leads to insightful theoreti-
cal framework and efficient computational algorithms [1,
2,5, 9, 10]. In practice though, the filter specifications
are usually in the frequency-domain and hence, direct de-
sign in the frequency domain is more desirable. The pri-
mary goal of this work is to demonstrate that an equiv-
alent structured matrix framework does also exist in the
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frequency-domain which can be utilized equally effectively
for designing 2D IIR filters.i We consider the design of
denominator-separable filters here because the inherent
symmetry in many commonly used 2D filters conforms to
the separable-denominator structure and the stability of
these filters can be easily verified.

This work shows that the optimal 2D rational model
identification problem belongs to a special class of mized-
nonlinear optimization problem where the linear and non-
linear parameters appear separately. Furthermore, the
mixed nonlinear criterion can be decoupled into a purely
linear problem for estimating the numerator and a sepa-
rate nonlinear problem of reduced dimensionality, for esti-
mating the separable denominators. The matrix structure
of the nonlinear denominator criterion naturally leads to
an iterative algorithm whereas the numerator is estimated
with a single step of Least-Squares estimation. Exten-
sive simulation studies show that the proposed approach
produces superior frequency-domain match to prescribed
magnitude response when compared with the results of
various existing general approaches [6-8].

II. Problem Definition

The transfer function of a 2-D separable-denominator LSI
system is given by
Yo ;io a(i, j)zy 'z’

1 . —1 m . -7 " (1)
Z?:o b()z; Zj-_-:o c(j)zy”?
Let, bE[b(0) b(1)---b(m1)]T, €2[e(0) e(1)---c(ma)]7,
A%{a(i,j)}, for i = 0,...,ny and j = 0,....ny. Let
the k; x ks desired frequency response be

H(z1,22) =

z(wi1,w21) z(wi1,wak,)

X, £ : : (2)
r(wik,,ws1) z(Wik,, wak,)

and the frequency response of the filter at the same fre-

quency points be X. Let xdévec(xd) and xévec(X). The
problem considered in this paper is to estimate the coef-
ficients in b, ¢, and A by optimizing the following 2-D
least-squares error criterion,
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min lell? £ |Ixa — x||?, with b(0) = c(0)=1. (3)

This criterion depends both on the 2-D denominator
and numerator coefficients making the error minimization
problem rather complicated. Utilizing the inherent matrix
structures this problem is theoretically decoupled in the
following section into two separate estimation problems of
reduced dimensionalities.

III. Decoupling the error-criterion
Let Hy(z;) and H.(z2) be the inverse filters of
B(z1) and C(z2) respectively i.e., B(z1)Hy(z1) = 1 and
C(z2)H.(z3) = 1. Then H(z1, z2) can be rewritten as,

A(z1, 22)
B(21) C(22)
For ky x k4 significant spatial samples, the above relation
can be expressed in matrix notation as

H = H AH (5)
where, H £ {h(i, §)} € R¥+**2

H(zy,29) = = Hy(21) A(21, 22) He(22) (4)

0 for (i—j)<0 ®
fori=1,...,k,7=1,...,(n1 +1) and
ey 8 [h(imj), for(i=j)20
Hi(id) = {0, for (i—j) <0 (1

for ¢ = 1,...,ky, 5 = 1,...,(n2 + 1). The frequency
response of the 2-D filter can be written in a matrix-
decomposed form as,

X = W;HWT, where, (8)
1 e~dwn e—i(ki—1)wn
A
w0
1 e—dwik e—J(k1—1)wix,
1 e dwan e—J(ka—1)wn
A
W= : : : . (10)

1 e~ Jwa, e—J(ka—1)war,

Applying the vec operator on both sides of (8) and using
Kronecker product (®) representation, we get

vee(X) £x =
= (W.H; ® W3H! Jvec(A)
= (W.H Q® W;H))a.

Hence, the error between the desired and the filter fre-

quency response, as defined in (3), can be written as,

e=X4—x = x4— (W:H} ® WbHi)a. (13)
This expression shows explicitly that the frequency do-
main error is linearly related to the numerator vector a
and nonlinearly related to the denominators in a rather
complicated manner. Interestingly, if the denominator
coefficients are known, the least-squares estimate of the
numerator coefficients can be obtained by minimizing the
error in (3) which produces,

a = (W.H; @ W,H} )#x, (14)
where # denotes the pseudo-inverse.Substituting this in
(12), we get the decoupled denominator criterion,

lle(b, O)II? = |(Te,k, — (Pw g @ Pw,m: ))xall® (15)

where, Py 2 Y(YHY)-'YH denotes the projection
matrix of a matrix Y with H being the conjugate-
transpose operator. Extending Theorem 2.1 in [12], it can
be shown that if the denominator is estimated by mini-
mizing the criterion in (15) and that estimate is used in
(14), the estimates retain the global optima of the original
criterion in (3).

IV. Reparametrization of the error-criterion

In this section the decoupled criterion in (15) will be di-
rectly related to the denominator coeflicients. The inverse
filter relation B(z1)Hy(z1) = 1 can be expressed in matrix
notation as

B H;, =1, where, (16)
s [bi-g),  i(i-5)>0
B.(i,j) = {0, if(i-j)<0
a B.
= |-—-—], and (17)
BT
o [h(i-g),  if(i-5)>0
Hy(i,j) = {o, if (i—j)<0
a
= [HY | HY], (18)

fort =1,...,k; and j = 1,...,%;, with the partitions
being such that B, € IR("TD**1 and HY e RF*(+D),
Let, W;, Wy = I;,. This inverse exists because the fre-
quency points wiy,’s are distinct. Using this inverse in (16)

vec(WbHWZ") = UCC(WbHEAHETWZ) along with the partitions in (17) and (18),

(11)
(12)

B, W, W:H, = I,
B,

= —— | Wy, W[H} |HE] (19)
BT
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B.W, W;H, | B,W, W,H}

BTW, W;H, | B7W, W,H
The bottom-left corner element of the matrix at right
suggests that W{f B and WH} are orthogonal, i.e.,
(WHEB)H(WH)) = 0. Also, since rank(W{/B) +
rank(WHY) = (ky = ny — 1) + (n1 + 1) = k;, using a
theorem on projection matrices,
PwsB+PwhH: = L,. (21)
I
Similarly, from the inverse filter relation C(23)H(22) = 1,
we can get

(20)

Pwuc +PwhH; = Ik (22)
Substituting the above relations in (15), the error can be
written (after some algebraic manipulations) as

a

e2 = [, ~Pwrc)®Pwrp+PwrB ® I, ] x4

b
(@ - Py o) VX' (Veol)x7[ D]

(23)
where, X! and X? are formed with prescribed data [13],
Vs (WEB) ((Wi;B)T (W;7B))™" and (24)

\L WZo)((WiHo)f (Wie))™t.  (29)
The final equation in (23) clearly shows the quasi-linear
relationship that the decoupled error vector eq has with

e I

the denominator vector Similar to the work in

[9-11], this relationship can be utilized to estimate the
denominators iteratively. Details are omitted due to lack
of space and will be reported in [13].

V. Simulation Results

Several designs were implemented using the proposed al-
gorithm and the performances were compared with exist-
ing approaches. Fig. 1 and 2 show the results of two
Bandpass filter examples from [6, 7] and Fig. 3 shows a
Lowpass case [8]. Fig. la, 2a and 3a show results using
the methods proposed in [6], [7] and [8], respectively. For
the same or less numerator/denominator orders, Fig. 1b,
2b and 3b show the corresponding results using the pro-
posed method. The relative rms errors [7] for the results
in Fig. 1a, 2a and 3a are 0.67, 0.28 and 0.77, respectively.
The errors for the results in Fig. 1b, 2b and 3b are 0.21,
0.26 and 0.68 respectively. Clearly, the proposed approach
found better match with lesser number of coefficients, in
all cases. The number of iterations for the proposed ap-
proach was less than 10 in all cases, whereas the general
optimization approaches sometimes took close to hundred
or more iterations.
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