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Abstract

We construct two-dimensional local cosine bases in
discrete and continuous ttme. Solutions are offered
both for rectangular and nonrectangular lattices. In
the case of nonrectangular lattices, the problem is
solved by mapping it into a one-dimensional equiva-
lent problem.

1 Introduction

Discrete-time cosine modulated filter banks, or, mod-
ulated lapped transforms (MLT’s), have been in use
for some time [1, 2, 3, 4]. Due to a few of their prop-
erties, they have become quite popular; For example,
all filtérs (basis functions) of a filter bank are obtained
by appropriate modulation of a single prototype filter.
Then, fast algorithms exist, making them very attrac-
tive for implementation. Finally, they have been used
recently to achieve time-varying splittings of the time-
frequency plane [5].

Their continuous counterpart, termed “Malvar’s
wavelets”, has found use in decomposing a signal into
a linear combination of time-frequency atoms [6].

Modulated lapped transforms have been used exten-
sively in audio coding [7]. They have also found
use in image coding, due to the reduction of block-
ing effects [8] when compared to the DCT. Some
video works contain modulated lapped transforms as
well [9]. However, in all these applications, one-
dimensional MLT’s are used separately. We develop
here true two-dimensional nonseparable MLT’s, which
offer more degrees of freedom. We consider both rect-
angular and nonrectangular sampling structures, and
offer solutions for both. In continuous time, similar
analysis is performed.

2 Review of Local Cosine Bases

Discrete-Time Case: By local cosine bases, or,
modulated lapped transforms we will denote a class
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of perfect reconstruction filter banks which uses a sin-
gle prototype filter, window, w(n] of length 2N (where
N is the number of channels and is even) to construct
all of the filters hg, ..., Axy—1 as follows:

w(n] 2k+1
i - cos| N 2n—-N+Dx], (1)

withk=0,...,.N—-1, n=0,...,2N — 1, and where
the prototype lowpass filter w[n] is symmetric, that
is, wln] = w2N ~-1-n],n=N,...,2N —1, and
satisfies the following [2]:

win] + wiN-1-n] = 2,

hk[n] =

n=0,...,N—1. (2)

This last condition, imposed on the window, ensures
that the resulting modulated lapped transform is or-
thogonal. The two symmetric halves of the window
are called “tails”.

A convenient way of analyzing filter banks in the time
domain, uses infinite matrices, which describe the ac-
tion of the filters on the input signal. For modulated
lapped transforms, such an infinite matrix matrix T
can be written as

Ao Ay
Ao A, (3)

where blocks Ag, A; are of sizes N x N, and contain
the impulse responses of the filters. Note that the filter
length is twice the number of channels. For example,
the jth row of A; is (h;[2N — 1 —iN]...k;j[N —iN])
for i = 0,1. For an orthogonal, perfect reconstruction
solution, the matrix T has to be unitary, which is
equivalent to the following [10]:

ATA, + ATA, = 1, (4)
ATA, = ATA, = 0. (5)

The conditions (5) are called the “orthogonality of
tails” conditions [10]. One more fact will be of use
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later. Call B; the blocks when no windowing is used,
orwln]=1,n=0,...,2N — 1. That is, these blocks
will just contin the cosines. Then

Ag = Bg-W, A, = B;-JWJ, (6

where W is a diagonal matrix with window coefficients
on the diagonal w[0], ..., w[N —1]. The blocks B; also
satisfy

1 1
BiB, = ;(I-J), B{B, = ;(I+J).

Continuous-Time Case: In continuous time, con-
sider the following set of basis functions:

prlt) = \/szwj(t) conl -k + 5)(t - )], (1)

for k = 0,1,2,..., and j € Z and the window func-
tion wj(t) is centered around the interval [a;, a;41].
As can be seen, (7) is the continuous-time coun-
terpart of (1) seen in the discrete-time case. The
a;’s are an increasing sequence of real numbers with
JEZ, ...0j-1 <aj <ajyr... We will denote by L;
the distance between a;4; and a;, Lj = aj41—a;. We
will also assume that we are given a sequence of num-
bers n; > 0 such that 0 < n;,9; + nj41 < L;j,j € 2.
The windows w;(t) given will be derivable (possibly
infinitely), and of compact support, with the follow-
ing requirements:

L.O<wit) <1, wit) =1 if aj+1n9; <t <
j+1 = Nj+1,
2. wj(t) is supported within [a; — 9, aj41 + 7541,

3. if | t — a; |< n; then w;_1(t) = wj(2a; —t), and
w?_i(t)+ wi(t) = 1.

This last condition ensures that the “tails” of the ad-
jacent windows are power complementary. With these
conditions, the set of functions as in (7) forms an or-
thonormal basis for L2(R). Therefore, in this most
general case, the window can go anywhere from length
2L to length L (being a constant window in this latter
case of height 1), and is arbitrary as long as it satisfies
the above three conditions.

The time-domain functions obtained here are local
and smooth, and their Fourier transforms have ai-
bitrary polynomial decay (depending on the smooth-
ness or derivability of the window). Thus, the time-
bandwidth product is now finite, and we have a local
modulated basis with good time-frequency localiza-
tion.

3 Discrete-Time Two-Dimensional Co-
sine Bases

Rectangular Sampling: We assume that we have
rectangular sampling, V) in horizontal dimension, and
N5 in the vertical one. We will construct the filters as
follows:

bl ] = 2o,
where
m[ny,ny] = cos[Q;;ll (2ny — Ny + D)x] -
cos[2i;21(2n2 — Na + )],

withi=0,.... Ny—1,7=0,...,No— 1, and n; =
0,...,2N1—1,n2=0,...,2N2—1. The corresponding
filters are of size 2N x 2N,.

The counterpart of one block-row of the matrix T from
(3) is
T, = (Dg D1 D; Ds),

where each block D; is of size Ny Ny x N1 N2, and D;
are given by:

D() = CO'W(), D2 = CQ-JWQJ,
D1 = Cl'Wl, D3 C3JW1J

Here, diagonal matrices W; contain appropriately
placed coefficients of the two-dimensional, persymmet-
ric window function wlny, ns] as:

W = [leJ JWOJ]

W W,
Window matrices W; are then obtained as:

w0, 0]

Wy = ,

] wN; = 1. Ny — 1]

[ w[Ny, 0]

W, = ;
W2N, =1, Ny — 1]

where we grow the horizontal dimension first. Blocks
C; are given by

CO = B02®B01’ C = B02®B111
C, B,,®By,, C3 = B;,®B,,,

2126



where block By, is the ith block in dimension j as in
(6). The conditions for perfect reconstruction are

DDy +DTD, + DID, + DID3 = I, (9)

DDy +DID; = o, (10)
DID, +DID, = 0, (11)
DID, = o, (12)
DID, = 0. (13)

Conditions (10)-(13) can be easily verified while (9)
will lead to the conditions on the window, the first
one being the two-dimensional counterpart of (2)

WZ4+IW2I+ W24+ JIWII =1, (14)

~Wo(I® HWo + IWoI(IQ I)IW,J +
+ Wi(IeI)W; —IW,J(I®3)IW,J = 0,
WoIW, — W JW, = 0,
~Wo(I@DWo + IW,J(I @ DIW,J —
- Wi(JQDW; +IW, JI@DIW,J = 0.

To summarize, in the two-dimensional case with rect-
angular sampling, we will have up to (N1N2)/2 free
variables. Compare that to (N + N3)/2 free variables
in the two-dimensional case with separable sampling.

Nonrectangular Sampling: The nonrectangular
case is a more difficult one. We offer a solution that
will use a particular mapping from one dimension into
two dimensions Note that this solution would mean
that the filters are obtained by shifting the prototype
filter along a line, and that it is very similar to what
was done in [11]. It will hold for an even sampling
density N. First, we find the upper-triangular form of
the sampling matrix

a b
D = (0 c) ’
with N = det(D) and we assume that b and ¢ do not
have common factors. For the support of our filters,

we will take two unit cells, the ones located at points
[0,0] and [a,0]. Then, define the filters as follows:

wlny, no) [2

VN
(15)

with £ = 0,..., N — 1, and n;,n; belonging to the
unit cell as explained above. By doing this, we have
mapped the problem into the one-dimensional prob-
lem, that is

hk[’nl, nz] =

he[0,0] = hgl0],

k41
4;\’, (2(cni—bng)—N+1)7],

hil[—— 1] = 1],
hk[2a—l+(—c————1—)c(b—+2,c—1] = h2N—1].

All the proofs are now equivalent. The only thing left
is the condition on the window. The window has to
be persymmetric and

2[(_0:_1)(1’_“"1_)

w?[ny, na) + w +a—1l-n,c—1-ny] = 2,

since
wW? + JW?J = 2L

In the quincunx case, for example, this scheme
would lead to one-dimensional filters. However, if
we replace cny — bny with ny + ny with [ny,ng] €
{[0,0],[1,0],[1,1],[2, 1]}, the whole problem is again
mapped into a one-dimensional problem and thus eas-
ily solved.

4 Continuous-Time Two-Dimensional
Cosine Bases

The construction in continuous time is very similar to
what we have just presented in discrete time. Thus,
we will give a short overview, while for more details
and proof of the basis property, refer to [12].

In continuous time, consider the following set of basis
functions:

2
()ojlyjzykx,kz(tlrtz) = Lo L: wjl,j,(h,tz) m(t1,t2),
J1*)2
(16)
where
T 1
m(ty,t2) = cos[z—(k1+ 5)(t1 — aj,)] -
J1
T 1
COS[Lj2 (k2 + 3)(t2 — aj, )],

for k; = 0,1,2,...,¢ = 1,2, and j € £. As can be
seen, (16) is the continuous-time counterpart of (8)
seen in the discrete-time case. The a;,’s are increasing
sequences of real numbers with j; € Z, ...a;,_1 <
aj; < @j;4+1... We will denote by L;, the distance
between aj,+1 and a;,, Lj, = aj,4, —aj,. We will also
assume that we are given a sequence of numbers n;, >
0 such that 0 < n;, < L;;/2, 0 < my;, < Lj,—1,0i €
Z. The windows wj, j,(t1,t2) given will be derivable
(possibly infinitely), and of compact support, with the
following requirements:
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1. 0 < wj, j,(t1,22) < 1, wj, j,(t,t2) = 1 i @, +
M, St < @1 — Mkl

2. w;(t) is supported within [a;, — nj,,85,+1 +
Njv+1] X [@ja = Mjia» Gjat1 + a1,

3. tails of adjacent windows are power complemen-
tary (see [12] for more details).

With these conditions, the set of functions as in (16)
forms an orthonormal basis for L,(R?) [12]. Note
that as presented above this would be the counter-
part of the rectangular case in discrete time. For a
more general tiling of the space, that is, counterpart
of the nonrectangular case, see [12]. Therefore, in this
most general case, the window can go anywhere from
length 2L; x 2L» to length Ly x L (being a constant
window in this latter case of height 1), and is arbitrary
as long as it satisfies the above three conditions.

5 Conclusions

Two-dimensional local cosine bases were presented
both in discrete and in continuous time. In discrete
time, we examine both rectangular and nonrectangu-
lar lattices. Although solutions for the rectangular
lattices are more important in practice, those for the
nonrectangular ones are a difficult challenge. In that
case, the problem is solved by mapping it inteo an
equivalent one-dimensional problem. As a result, so-
lutions easily follow, however, the resulting filters will
be obtained by modulation along a single line. More
general modulation structures are a topic of current
research. In continuous time, similar analysis was per-
formed, leading to the two-dimensional counterpart of
the “Malvar’s” wavelets.
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