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ABSTRACT

A new adaptive filtering approach to multichannel
source separation is presented. The method is based
on an extension of traditional single channel blind
equalization. This multichannel extension will be pre-
sented theoretically and the results will be demon-
strated by simulation using both communications data
and speech. The new source separation algorithm is
compared to existing adaptive separation algorithms
which handle multipath: the Herault-Jutten source
separation algorithm (1], and the time-recursive We-
instein et. al. [5] algorithms. The new method of-
fers dramatic performance improvement over existing
methods and the ability to handle different source data
types in an optimal fashion.

1. INTRODUCTION

In recent years the source separation problem has
been studied by Cardoso and others [2, 3] who have
presented eigenstructure-based methods for source sep-
aration. Adaptive filtering approaches such as the
Herault-Jutten (HJ) algorithm [1], and the Weinstein
et.al. algorithms [5] have also emerged. Recently Car-
doso et. al. have introduced adaptive matrix algo-
rithms [4]. While some of the source separation meth-
ods are not suited to handle multipath channels, the
adaptive filter methods do so in a natural manner.

Blind equalization is an adaptive filter technique
which can restore a signal which has been corrupted
by a multipath channel back to original condition. A
blind cost function J,, is minimized, in much the same
way that least mean square (LMS) and recursive least
squares (RLS) adaptation (with access to the source)
minimize the mean squared error J = (& — z)2.

In the blind equalization update equation, an odd
nonlinear function g(-) must be found which has been
shown to be the mazimum a posteriori (MAP) esti-
mate of the data plus convolutional noise [6]. The
function g(-) and J, can be found for the a given type
of signal [6, 9, 8]. An example of J, is Gray’s Variable
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Figure 1: Single Channel Blind Equalization System

Norm 0% = ﬁ;—z (8]. OF is equivalent to the Go-
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dard or constant modulus criterion J, = (&— %E—f;z:’)z

[10]. Of is the Sato criterion J, = (£ — %%a-sign(i))z
[11]. Using the simple system shown in Fig. 1, we
have the following update equations and cost func-

tions: when the reference data z is available as in the
LMS algorithm,

h=t = h™ 4 p(d - 2)y

y J=(@E-z)? (1)
and when the reference is not available we can use a

blind update,
R =kl u(E-g@))y  J= (3 - 9(2))% (2)

Notation convention: the estimate of the deconvolution or
inverse filter is ix'l, T =y=x* ﬁ'l, y is a vector containing
the last k samples of sensor data y, where k is the order of
the inverse filter.

2. MULTICHANNEL EXTENSION OF
BLIND EQUALIZATION

Given access to N sensors with an assumed number
of sources less than or equal to NV, all with unknown di-
rect and cross channels, we wish to recover all sources.
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Figure 2: Multichannel Blind Equalization System Us-
ing an Inverse System With Feedback

2116



We must decorrelate all the inputs for the source sep-
aration problem. If a non-unity direct channel exists
we must also invert it thus performing the combined
separation/equalization problem.

The multichannel cost function can be made as the
simple sum of single channel blind cost functions

Jmb = b1 + Jb2 + ... + Jon- (3)

Referring to Fig. 2, the two-sensor, two-source
problem can be formulated:

no _ hi1 han z
Y2 [ hi2  ha: ] * oz, )

The y’s are the sensor data and the z’s are the un-
known sources.
This means that

yi=z1xhy +z2xhy (5)
y2=z1*hia+z2%hy (6)

hi1 and hyy are the direct channels and h;2 and hy
are the cross channels.

For source separation only, we study the two-sensor,
two-source problem:

v _ | 1 hxn T
yz_[hrz 1]*12' (M)

The diagonal (or direct) channel filters are unity. The
estimation of the cross channels and the separation of
the sources are the two distinct parts of the problem.
The HJ source separation algorithm and the others
tested in this paper are time-recursive (as opposed to
batch or frequency domain) algorithms. The Wein-
stein et. al. [5] algorithm has a batch and two time-
recursive implementations. We have tested the time-
recursive versions of their algorithm. One version has
a stochastic gradient update method (like LMS) and
the other has a Newton update method (like RLS).

3. THE NEW SOURCE SEPARATION
METHOD

Considering a two source, two sensor case using the
equations (5,6), we make use of feedback by using the
current best estimates of A;s and ha; to obtain esti-
mates of the sources:

:El =y — :i'g * h21 (8)
5)2 =Y — 5:1 * h12 (9)

The above equations are repeated at least twice at
each iteration. These equations make up the sepa-
ration part of the algorithm. The general separation

formulations are:
—Zi‘j *ilji, (10)
F#i
the set of equations (10) are repeated at least N times.

Using the multichannel blind cost function J,,,p in
(3), the cross channels are updated with:

3Jm N

hay = hoy + 4 o2, > : (11)
0Jm 3

hi2 = his + p 3%, ° Z;- (12)

‘The general N-source, N-sensor channel update for-
mulations are:

ij = hij +/1T$'~ (13)

Comparing this with the single channel blind equal
ization update in equation (2), we have

hij = hij + p(&; — g;(25));. (14)

Example: Two Uniform Sources

From [6, 8], we know that O? is well suited to work
with uniformly distributed data. For separation of two
uniform sources we can use Jynp = O03%(21) + 0%(%2),
and the updates are:

hoy = hay + p(&1 — E::ML 5«'?) Zy (15)
i3 s |1'ZI ~3
hia = hia + p(22 Floa|t 25)E;. (16)

Another example uses a Laplace distributed pro-
cess as source 1 and a uniformly distributed process
as source 2. From [6, 8], we know that O? is optimal
to work with Laplace (double-sided exponential) dis-
tributed data. For separation of these sources we can
use Jmp = O%(21) + 03(22).

4. DECORRELATION SEPARATION
USING FEEDBACK

A simple decorrelation operation which ignores the
a priori known statistical information contained in
the nonlinearity of (14) gi(£;), will also work for the
source separation problem. This approach has de-
graded performance with respect to the “multichannel
blind equalization separation” described in Section 3
because it does not make use of the known statistics
of the sources. It is described by equation (10) which
is repeated at least N times, and

il,‘j = il,'j +u i‘j ia (17)
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5. EXISTING ADAPTIVE FILTER
SOURCE SEPARATION METHODS

The HJ Source Separation Algorithm [1]

The estimated sources are formed as in (8) and (9),
and the cross channels are updated with:

hay = hy + pf(21)9(2,) (18)
illz = illz + uf(22)g9(2;). (19)

The functions f(-) and g(-) are odd. The algorithm
uses the Bussgang property of finite variance signals
[9]. Although it is a generalization of the decorrelation
algorithm of Section 4, the optimal choices for ()
and g(-) were not known until their relation to blind
equalization theory was found. The simplest method
which can be used to find the optimum nonlinearities
is presented in [6]. In testing this algorithm using
uniform data and f(z) = «® and g(z) = z (i. e.
using only the nonlinear term of (14)), the resulting
algorithm had nearly identical performance the new
algorithm of Section 3.

Weinstein Separation Algorithms [5]

These algorithms use a different inverse system ar-
chitecture. An “adjugate system inverse” is used which
is a polynomial matrix inverse without dividing by the
determinant. Variables v; and v, are defined,

1 = y1 — §ia * oy (20)
U2 =y2 — fh * hyz, (21)
and the solution as derived in [5] is:

Cy202h21 = Cyyvz (22')
Cy1vlh12 = Cy,ul, (23)

which is a set of normal equations. Here C is a cross
correlation matrix and c is a cross correlation vector.

Just as the solution of the normal equation has
batch and various recursive implementations, so does
this set. Following the notation used above, and pre-
senting only the version for real data, we have the
following updates: for LMS-type

il?l = i121 + u o2 By (24)
hig = his + B 01 By, (25)
and for RLS-type

hay = hay + Cy_ﬁ,l vp 0y (26)
hiy = his + CJL, 91 8y (27)

It was noted in our simulations that the RLS-type up-
date did not offer speed improvement because the filter
update must proceed slowly enough for the separation
process to be accurate.

6. SOURCE SEPARATION SIMULATIONS

The two source signals used in the simulations shown
in Figs. 3 and 4 were uniformly distributed processes
with unit variance. The cross-channels were hys = [4
3 -5.3.3 1andhy=[5-4.2 -1 -1 J1]. An
interesting discovery was made in testing these source
separation techniques. The closer the direct/cross en-
ergy ratio is to unity, the longer the algorithm will
take to converge. Direct/cross energy ratio is

2 hii(k)? (28)
2 iwi 2ok hyi(k)?
This problem is akin to the eigenvalue spread problem
experienced by the LMS algorithm. For these tests the
direct/cross energy ratios were: 3.18db for source 1,
and 1.61db for source 2.

For all of the following simulations, we repeated the
“bootstrapping” separation equations (8,9) four times.
After repeating the equations many times a point of
diminishing returns is reached.

For Figs. 3 and 4, the mean squared errors (MSE),
(21— €1)* and (23 — £2)?, are used so the effective-
ness of the separation can be shown. The MSE from
10 Monte Carlo runs were averaged and plotted. Step
sizes were adjusted so that a steady state mean squared
error of .02 is attained.

Fig. 3 shows the results of comparing the new algo-
rithm of Section 3 to the decorrelation only method of
Section 4. The new algorithm which uses the known
statistics of the sources converges much faster.

Fig. 4 shows the results of comparing the new al-
gorithm of Section 3 to the Weinstein et. al LMS-type
algorithm which uses the “adjugate inverse system”.
The new algorithm shows faster convergence, suggest-
ing that the use of the a priori known statistics of the
sources helps to speed the separation process. In com-
paring Fig. 4 with the decorrelation result of Fig. 3,
we see that the use of feedback is also a help to the
algorithm.

Speech Data

In Fig. 5, we show results using the new source
separation method with speech signals as inputs. The
cost function used was Jnp = O%(2,) + O?(&;). The
cross channels were of order 25. The results are quite
striking as one can see that the waveforms of the orig-
inal two speech signals are recovered nearly perfectly.
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7. CONCLUDING REMARKS

A new source separation method allows one to tailor
the algorithm to be optimal for given types of source
data. It has far-ranging potential uses, and allows one
to use the a priori known statistics of the sources to
obtain a more powerful algorithm than simple decor-
relation. Blind equalization cost functions can be ex-
tended to handle multichannel systems.
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Figure 3: New Algorithm and HJ Algorithm Steady
State MSE=.02
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Figure 4: Comparison of new algorithm to the Wein-
stein et. al. LMS-type Algorithm. The steady state
MSE is .02 for both cases.
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Figure 5: Speech Separation Simulation Using New
Algorithm and O?
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