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Abstract

A new technique for localization of multiple signals is
presented. Unlike existing techniques which require that
the whole array be sampled simultaneously and con-
sequently require many receivers, our technique allows
to sample arbitrary subarrays sequentially and conse-
quently significantly reduces the required number of re-
ceivers. The estimation method we use in conjuction
with this sampling scheme is based on approximating the
corresponding maximum likelihood estimator by a com-
putationally simpler Generalized Least Squares(GLS) es-
timator that is proved to be both consistent and effi-
cient.

1 Introduction

We consider the problem of localizing multiple narrow-
band signals by an arbitrary sensor array. The existing
super-resolution solutions to this problem require that
the whole array be sampled simultaneously and conse-
quently require that the number of receivers equal the
number of sensors. This requirement may impede prac-
tical implementation of such solutions especially in cases
where the number of sensors is large and where the re-
ceivers are expensive. We propose in this paper a differ-
ent approach where the array is sampled by parts, i.e.
different subarrays are sampled sequentially, with the
subarrays being arbitrary and not necessarily mutually
exclusive. Using this approach, and keeping the size of
the subarrays small, the number of receivers needed, and
consequently the associated hardware involved, is signif-
icantly smaller than in the common approach. Thus, for
instance, only two receivers may suffice to sample the
output of a large array if different pairs of sensors are
sequentially switched to their inputs. In fact, the gen-
eral idea is not new: conventional interferometers are us-
ing such a switching technique to sample different ”base-
lines” of the array.
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To illuminate the difficulties involved in performing
detection and localization of multiple sources from sub-
arrays data it is instructive to consider the case where
pairs of sensors are sampled sequentially, i.e. each subar-
ray consists of two sensors only. Notice first that in this
case no single subarray can perform detection or localiza-
tion by its own. Moreover, when only part of the different
paits of sensors are sampled, the existing high-resolution
techniques are not applicable since no estimate of the
whole array covariance, nor of any large subarray, can be
constructed. Even if all the different pairs of sensors are
sampled, and an estimate of the whole array covariance
mat-ix R is obtained in an element-by-element manner,
with the (3, j)-th element’s estimate, ft’g, obtained from
the samples of the (i, j)-th sensor pair, eignvalue-based
detection criteria, such as [6], may fail since the eignval-
ues of R are not guaranteed to be non-negative (as is the
case when the whole array is sampled simultaneously).

The estimation method we use in conjuction with the
subarrays sampling scheme is based on first deriving the
Maximum Likelihood Estimator (MLE) for the problem,
and then, since the computational load involved in its
implementation is too heavy, approximating it by a Gen-
eralized Least Squares(GLS) estimator that is computa-
tionally much simpler. This new estimator is proved to
be both consistent and efficient. The estimator is ap-
plicable also to the important case of coherent signals
arising, for instance, in specular multipath propagation.

2 Problem Formulation

Consider ¢ wave-fronts 1mpinging from locations
61,...,6, on an array consisting of p semsors. For
simplicity assume that the sensors and the sources are
all located on the same plane and that the sources are
in the far-field of the array, so that {6;} represent the
Directions-Of-Arrival (DOAs).

Assume also that the sources emit narrow-band sig-
nals all centered around a common frequency. Let s; (t)
denote the complex envelope of the i-th source signal,
and let x.(t) = (zc1(t), zca(t), - . ., 2cp,(t))T denote the
vector of complex envelopes formed from the signals re:
ceived by the c-th subarray of sensors, with p, denoting
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the number of sensors in the subarray, and T denoting
transposition. In the presence of additive noise, this re-
ceived vector can be expressed as:

xe(t) = 3 8c(6k)sk(t) + ne(t)

k=1

(1)

where a.(0) is the steering vector of the subarray express-
ing its complex response to a planar wavefront arriving
from direction #, and n.(t) is the complex envelope of
the c-th subarray noise. This expression can be written
more compactly as:

xe(t) = Ac(8)s(t) + nc(t) (2)

where 69%(6;...6,)T , and A.(8)%[a(61),...,a.(6,)]

is a p. x ¢ matrix, and s(t)déf(sl (&)1 84(2))F is a
vector formed from the emitted signals. We shall assume
that the steering vectors {a.(6)} are known for all ¢ and
all 8 € ® , where ® denotes the field-of-view.

Let the subarrays be sampled sequentially, with

Xcdéf[xc( -1 Xc(ts, )] denoting the c-th subarray

samples, m, denoting the number of samples taken from
this subarray, and ¢§,..., iy, denoting the sampling jun-
stants.

Now, the problem is stated as follows: Given the sam-

ples of K different subarrays ng{xl, X3,..., Xk} -
estimate the directions 6.

To solve this problem, we make the following assump-
tions:

A1l. The noise-vector n(t) of the whole array is a zero-
mean complex-Gaussian wide-sense stationary pro-
cess with a covariance matrix o*I, where o2 is an
unknown positive scalar and I is the identity ma-
trix, and {n(¢{)} are uncorrelated Ve, 1.

A2. The signal-vector s(t) is a zero-mean complex-
Gaussian wide-sense stationary process uncorre-
lated with the noise-vector and having an unknown
arbitrary covariance matrix P. The signal samples

{s(#{)} are uncorrelated Ve, 1.

Based on these assumptions and using (2), the covari-
ance matrix of the c-th subarray is given by

R.(¢) = A.(0)PAT(6) + o2 (3)

where ¢ represents all the unknown parameters ¢ =
{6, P, 0%}, and () denotes complex-conjugate transpo-
sition.

The pdf of the whole batch of data X is the product
of the subarray pdfs, that is

K
p(X]6,P,0?) = [[{r 7 |Rc| " exp[-tz(R; 'R.)]}™

(4)

where | - | denotes determinant, tr() denotes trace,

5 def . . .
=XX¥ /m, is a sample-covariance matrix. The

MLE is given by:
6 = arg maxz[p(X | 6,P,0?%)]
P

A0

MLE: (5)

Unfortunately, due to the large number of free param-
eters involved, the computational load involved in this
maximization is very heavy. Yet, unlike in the MLE es-
timator for simultaneous sampling [2], we were not able,
except for the case of a single source, to reduce the com-
putational load by eliminating P and o2 analytically.
For the case of a single source, the exact reduction of (5)
to a one-dimensional maximization problem is presented
in [5].

3 The GLS Estimator

The estimator we propose minimizes the ”distance” be-
tween the measured sample-covariances, {R.}, and the
modelled covariances {R.} given in (3):

K
0 =arg min ) ||T.[R.—A.(8)PAZ (8)-o2T|TH |2

X0 =1
(6)
where || - ||r denotes the Frobenius norm, and T,
denotes a ”whitening” transformation that ”whitens”
the elements of the observed error matrix (R, — R,).

This transformation can be approximated [5] by T, =
" ~1/2 ]
ym; R, / . The above estimator can be regarded as a

variant of what in the statistical literature (3] [1] is known
as the Generalized Least Squares(GLS) estimator.

To solve the above minimization problem, we first min-
imize with respect to P and o> while holding 6 fixed.
Notice that since (6) is quadratic with respect to their
elements, this minimization can be carried out analyt-
ically. We then substitute the minimizing values P(8)
and 6%(8) back into the cost function (6) and obtain a
cost function that is a function of 8 only. The result is

[5):

’

~

. — s Tpl
GLS: 6 = arg mam {r P.A(O)r} (7)
where
vec(I;)
def .
r= :
vec(Ig)
Al(0)® A1(8) /myvec(R]Y)
A(O)déf : :

Ak(0)® Ax(8) g vec(Ry')
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with I. denoting the p, x p, identity matrix, % de-

noting the complex conjugate, ® denoting the Kro-
- . -1/2

necker product, A,_.(O)d.—e_f,‘/mc R, / A (@), and where

Pjt 9) is the projection matrix on the subspace orthog-

onal to the subspace spanned by the columns of A(9):

P.i(a)dgl ~ A(0)(AH (0).4(0))-14H ).

Notice that the dimensionality of the minimization
problem has been reduced to q. The minimization can
be efficiently accomplished by any multidimensional min-
imization technique. :

The above estimator can be proved [5] to be both con-
sistent, and asymptotically efficient (i.e. it asymptoti-
cally attains the Cramer-Rao lower bound (CRB)).

In the above GLS estimator, P has not been con-
strained to be Hermitian, and neither has &2 been con-
strained to be real-valued. This could however be easily
accomplished [5] by inserting into (6) P = Py + jP;,
where Pr and P; denote the real and imaginary parts
of P, and constraining Pr and P; to be symmetric
and anti-symmetric, respectively, thus reducing the total
number of unknown components in P by half. The re-
sulting estimator is more accurate and computationaily
more effective due to the reduction of the parameters
dimensionality.

In case the signals are known to be uncorrelated, P
can be taken to be diagonal thus reducing the number of
unknown components, and consequently improving the
estimator’s performance {5].

4 Simulation results

To demonstrate the performance of the described
method we simulated a 5-omnidirectional-element uni-
form circular array with a diameter of 0.6\. The 3-
db beamwidth of the array is approximately 72°. Two
equipower uncorrelated Gaussian sources were located at
100° and 120°. Prior knowledge about the uncorrelat-
edness of the sources is assumed to be available. The
subarrays consisted of the five longest 2-element subar-
rays (baselines). 128 independent samples were taken
from each subarray. In addition to the GLS estimator
described above, we also examined an estimator obtained
by substituting the GLS estimates P(6) and 3°(8) into
the likelihood function, thus obtaining a concentrated
likelihood that is a function of 8 only. We call the min-
imizer of this concentrated likelihood the GLS-ML esti-
mator.

In a first experiment A set of 100 monte-carlo runs was
carried out for each SNR, with the DOAs estimated in
each run and the RMS DOA error (averaged over the two
sources) computed from the whole set. Fig.1 compares
the results obtained by using the GLS and GLS-ML es-

timators with the CRB (derived in (5]). The efficiency
of the estimators is evident.

In a second experiment we sampled all the ten possible
2-element subarrays (baselines), but the number of sam-
ples from each subarray was reduced by a factor of two,
lLe. m, = 64, thus retaining the same overall number of
samples used. The results are shown in Fig.2. Compar-
ing Fig.2 with Fig.1, it turns out, not surprisingly, that
it is advantageous to sample only the largest baselines
rather than spend time on the smaller baselines.

Interestingly enough, notice that in Figs.1 and 2 the
DOA errors do not vanish for high SNR values. This
phenomenon is seen more clearly in Figs.3 and 4 where
the CRB for subarray sampling is compared with the
CRB for simultaneous sampling. The number of snap-
shots in the simultaneous sampling is m = 64, i.e. equal
to the number of samples taken from each subarray. No-
tice that at low SNR there is essentially no difference in
the DOA errors of the two DF methods.

To demonstrate the advantage of the proposed esti-
mators we compared them with a "naive” estimator con-
structed as follows: from the various 2-§lements samples
we create a "sample-covariance” R = {12’,,]} of the whole

array in an element-by-element way, with R,-j = flﬁ cre-
ated from the samples of the subarray containing ele-

ments ¢ and j, and R;; created from the samples of all
the subarrays containing element i. We then use the
Alternating Projections algorithm [7] in conjuction with

R to estimate the DOAs. (In fact any other estimation
method, such as MUSIC [4], could have been used in-
stead). It turned out that the RMS error exceeded 40°
at all SNR values. That is, the sources are not resolvable
by this naive estimator.
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GLS and GLS-ML estimators vs. CRB for subarray sampling
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Figure 1: The RMS DOA error of subarray sampling as a
function of SNR. for two equipower uncorrelated sources
located at 100° and 120° impinging on a 5-element cir-
cular array with diameter 0.6A. Only the 5 longest base-
lines are sampled.

GLS and GLS-ML estimators vs, CRB for subarray sampling
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Figure 2: The RMS DOA error as a function of SNR
for two equipower uncorrelated sources located at 100°
and 120° impinging on a 5-element circular array with
diameter 0.6)X. All the 10 baselines are consecutively
sampled.
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Figure 3: The RMS DOA error as a function of SNR
for two equipower uncorrelated sources located at 100°
and 120° impinging on a 5-element circular array with
diameter 0.6A. The solid line represents the CRB for
subarray sampling of all the 10 baselines. The dashed
line represents the CRB for simultaneous sampling of the
whole array. The + signs represent the results obtained
with the GLS estimator.
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Figure 4: The RMS DOA error as a function of the num-
ber of samples for two equipower uncorrelated sources
located at 100° and 120° impinging on a 5-element cir-
cular array with diameter 0.6). The solid line represents
the CRB for subarray sampling of all the 10 baselines.
The dashed line represents the CRB for simultaneous
sampling of the whole array.
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