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1. ABSTRACT

A large number of array processing applications such as
radar, sonar, etc require the estimation of some param-
eters given the output of an array of sensors. Many high
resolution methods for source parameter estimation are
based on the eigen decomposition of the covariance
matrix of the sensor output. The PASTd (projection
approximation subspace tracking with deflation) algo-
rithm [6] has been recently published for tracking both
the signal subspace and its rank at a computational
cost of order O(nr), where n is the number of sensors
and r the number of sources to be detected. In this
Paper we address the problem of tracking the physical
parameters as direction, distance, etc given the esti-
mated signal subspace. All known parameter estima-
tion methods as MUSIC, MinNorm or WSF are based
on a different cost function which is minimized with
respect to the desired parameters. Standard minimiza-
tion methods as gradient or Newton’s method fail to
converge to the global minimum if the starting value is
not close enough to the desired solution [5]. We intro-
duce a new cost function which has to be minimized
with respect to the parameters and an algorithm of
low computational cost which is able to find the global
minimum, starting from any initial value in all our ex-
periments.

2. INTRODUCTION

We present a new cost function which, if minimized
with respect to the desired parameters of all sources
8 =[6y,...,6,], yields estimates for those parameters.
The minimum of this function is found and tracked
by an algorithm based on an approximated Newton
method combined with a random search for global con-
vergence. Its computational complexity is of order nr2,
where n and r denote the number of sensors and the
number of sources, respectively.

Consider an array of n sensors and wavefronts from
r narrowband emitters impinging on it. Because of the
extension of the array each sensor receives a delayed
version of the emitted signal. For narrowband signals
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this delay appears as a complex phase shift in the base-
band signal. The noise associated with each sensor is
assumed to be uncorrelated from sensor to sensor. The
baseband model of the sensor array can be formulated
as the sum of r wavefronts corrupted by white sensor
noise

I](t) r
=) si(t)a(6:) +n(), (1)

zn(t) i=1

z(t) =

where s;(¢) and a(6;) denote the narrowband signal and
the steering vector of complex phase shifts of source i,
respectively. The array is assumed to be unambiguous,
meaning that the steering vectors of n sources with
different parameters 6; (i = 1,...,n) are linearly in-
dependent. The derivative of a steering vector with
respect to 8 is denoted as %% = d. The white noise is
represented as n(t). If the white noise assumption does
not hold, the noise covariance matrix En n¥ = C N can

be estimated and the signals can be prewhitened with
&) = & "2 (0)

Here we restrict ourselves to the case of one param-
eter per source. Extension to multiple parameters is
straightforward but leads to a more complicated for-
mulation of the algorithm. The covariance matrix of
z(t) reads

Cx =Ezz" = A(6)CsA%(9) +°T (2
with A(8) = [a(61),...,a(8,)] and Cs being the ma-
trix of steering vectors and the source covariance ma-
trix, respectively. We assume the signals to be not fully
correlated leading to a full rank matrix Cs. The noise
power is denoted as o2,

The eigen decomposition of Cx is given as

n
Cx = ZA,‘E 1_1._{{ = UsAsU? + UNANUﬁ. (3)
i=1
The matrix Us contains the r most dominant eigenvec-

tors which span the so called signal subspace. It can
be easily verified that the subspaces spanned by the
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columns of Us and A(8) are identical. This property
has been used in most of the high resolution methods
and will also be used here.

3. THE NEW COST FUNCTION

The basic idea is to find a set of parameters 8 such that
the subspaces spanned by Us and A(8) are as close as
possible. To accomplish for this we define the following
cost function which has to be minimized with respect
to @

h(8) = £(6:)9(8), (4)
i=1
where
f6:) = a"(8:)Psa(6;) and (5)
0@ = |@*@a@,. @

P: = I - Us(UHUs)"'U¥ denotes the projection
matrix onto the null space of Us . The function f(6;)
is a measurement of the distance between the steering
vector a(6;) and the signal subspace Us. If a(6;) lies in
the signal subspace, f(6;) will be zero indicating that
0; matches one of the source parameters.

The matnx 2-norm (2] in g(8) increases whenever
the matrix A¥ A is close to singular. Minimizing h(8)
therefore forces A to have full rank. Another reason
for this choice of g(8) is that this function is approx-
imately constant whenever all elements of @ are dis-
tinct. This ensures that the bias introduced by the
function g is small compared to the stochastic error in-
troduced by the noisy estimates of the signal subspace.
If we chose g(8) = 1, then 1/k(8) would be a multidi-
mensional MUSIC-function [3]. Figure 1 shows a 3-D
plot of 1/h(8) with g(8) = 1 for the case where two
sources are located at 8, = 35° and 6, = —20°. This
function exhibits four dominant maxima at positions
8 = [35°-20°], [-20°35°), [35° 35°], [-20°-20°] leading
to the well known problem of deciding, which solution
to choose. In this case, only the first two possible solu-
tions yield satisfying results. The latter two lead to a
solution where one parameter is detected twice and the
other one is lost. In contrast, Figure 2 depicts 1/h(8)
for the case where g(8) has been chosen according to
Eq. (6). It can be clearly seen that the two undesirable
peaks have vanished. Locating one of the two remain-
ing peaks always leads to the desired parameters.

The computation of the 2-norm of a matrix requires
the calculation of the most dominant singular value
of this matrix, a task which is iterative and compu-
tationally expensive. Additionally, the derivatives of

Figure 1: Cost function of MUSIC
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Figure 2: New cost function

the 2-norm with respect to 8 are in general not avail-
able. Hence we use a different approach which proved
its usefulness in various simulations. Because A7 A
is hermitian and positive definite, its least dominant
sm% ular vector and the most dominant e1genvector of

A% A)~! are identical. This most dominant elgenvec-
tor denoted by » can be computed iteratively using the
well known power method [2]. Choosing an arbitrary
initial value for v,, the following update formula will
converge to the most dominant eigenvector of the ma-
trix (A7 A)-1

v, = (*‘}HA)_IPJ:—l (7)
v = = 8)
1]

Various simulations showed that it is sufficient to
perform only one iteration each sample and we still get
a good approximation for the eigenvector and eigen-
value. If we assume that v is a good estimate for the
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most dominant eigenvector of (A¥ A)~1 with the cor
responding eigenvalue A, g(8) can now be written as

9(8) = =27 (AT ) 'u = (27 4% ap) . (9)

4. THE APPROXIMATED NEWTON
METHOD

For updating the parameter estimates, we use a Newton
type algorithm. The update formula for the parameter
vector 8 can be written as

() = 8(t - 1) - H;'Yh|g_g,_,), (10)

where Vh(8) and H,(0) are the gradient and the Hes-
sian matrix of h(g). The gradient of k() evaluates to
8/(8;)

98,
Yh(6)=Vg(9)f(8)+ : 9(8) (1)
24(8)

a8,

with 240) = 2R([d¥ (6) P+ a(8)).

To compute the gradient of g(8) we have to con-
sider the following. With v being the most dominant
eigenvector of some positive definite and hermitian ma-
trix B, the 2-norm of B can be expressed as || B||; =
A1 = v¥ Bv. The derivative of A; with respect to some
parameter 6 reads

A aF udoB ERpd
P8 = agBrtyigputw Boy (12)
ovf nov yoB
= A\ (W2+2 %) +v 30—2 (13)
oB
QHWE’ (14)

H
because of ﬂ%TQ = 0 for a normalized eigenvector v.

Using this result, we can compute —ﬂuaa?

%9(6) _  mda"a)
86; - = 08; -
9 H -1
(AT A)?
= -Aff (—5,7’_)—2 (15)
and

V9(8) = -2MR[(D7 ap) 0 (")),  (16)

where © denotes elementwise multiplication and D(8)
is defined as D(8) = [d(6:,...,d(8,))].

Instead of using the exact expression for the Hes-

sian matrix, we use the approximation H), = gH;

where H ; is a diagonal matrix with entries H 1{ii} =
2 d” (6;)P5d(6;). This approximation offers several
advantages:

e The approximation is close to the exact value in
the neighbourhood of the desired parameter.

o The matrix H} is positive definite.

e There is no need to compute the second deriva-
tives of g(€) which would require the full eigen N
decomposition of AZ A.

¢ Because of Hj being a diagonal matrix, its in-
version reduces to r scalar divisions.

The computational complexity for the update of the
parameter vector @ is hence of the order O(nr?).

If we simply used this Newton type algorithm to
iteratively search for the minimum of h(8), we would
have the well known problem of local convergence. This
would require good initial guesses for the parameters
which are in general not available. To avoid this prob-
lem we introduce a combination of Newton’s method
with a random search based on some properties of the
function f. It is easy to show that the value of £(6:)
is almost 0 if 6; matches the desired parameter of one
of the sources. In any other cases, its value is approx-
imately n. This leads to the idea of performing a ran-
dom jump for those parameters 6; whose values £(6)
are greater than some bound fys,. In our examples
we choose farar = 0.05n.

In order to not disturb the Newton method from
converging to the desired solution by random jumps,
those jumps are only allowed if the absolute value of
the derivative of f(6;) is below a certain bound f},,.
indicating that the algorithm is close to a local mini-
mum. This bound has to be chosen according to fisqz.
If | f'(6;)| is below f},,. and the algorithm is going to
converge to a valid solution, then the value of f(6;)
has to be smaller than the bound fys,, to prevent ran-
dom jumps in this case. In our simulations, a value of
Sraz = 0.1 lead to reasonable results.

Now we can formulate our algorithm

FOR i =1TO r DO
9(6) 22  f(6)2%E)
ﬁb{i’ i}

IF (f(6:) > fumaz) AND (|£(6:) < figas)

THEN 6; = X,

END IF
END FOR

X are random variables uniformly distributed over the
parameter range of 6.

8,~(t) = gi(t - 1) -
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a) Stochastic Newton Method
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Figure 3: Simulation Results

5. RESULTS

A linear equispaced array consisting of n = 9 sensors
has been used in all simulations. We used the PASTd
algorithm [6] for the signal subspace and rank estima-
tion. Our method is compared with a Root-MUSIC
approach [1].

The first scenario shows three sources — two of them
crossing at t = 1000 and the third one changing its
position instantaneously at t = 500. The signal to
noise ratio (SNR) is 0 dB. The simulation shows that
our method (Figure 3a) performs as well as the Root-
MUSIC method (Figure 3b) whose computational com-
plexity is of order O(n3®). The new method only re-
quires a few samples to identify the locations of the
sources and each time the PASTd algorithm decides
to change the number of sources, our method drops
the right one or finds the new source at the right posi-
tion. The second example consists of five sources which
appear and disappear one after the other. Figure 4a
shows the estimated directions and Figure 4b depicts
the number of sources that the PASTd algorithm de-
tects. It can be clearly seen that our algorithm detects
each newly appearing source at most 50 samples after
the PASTd algorithm realized it.

6. CONCLUSION

The results show that our new method is able to detect
sources with the same performance as the computation-
ally much more expensive Root-MUSIC method. Even
more important is the fact that this method is not re-
stricted to linear arrays as Root-MUSIC is. In contrast
to other parameter estimation methods, it is not only
local convergent. In all simulations the algorithm con-
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Figure 4: Simulation Results

verged to the desired solution from any starting point.
The same algorithm can be applied to the frequency es-
timation problem of time series. The analogy between
these two problems has been extensively studied in [3].
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