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Abstract

A new method for localizing multiple signals in spatially-
colored background noise using an arbitrary passive sen-
sor array is presented. The method enables also to ex-
ploit prior knowledge that the signals are uncorrelated,
in case such information is available, so as to improve the
performance and allow localization even if the number of
signals exceeds the number of sensors. The estimation
is based on the Generalized Least Squares criterion, and
is both consistent and efficient. Simulation results con-
firming the theoretical results are included.

1 Introduction

We consider the problem of localizing multiple signals
in unknown spatially-colored background noise using an
arbitrary passive sensor array. Only relatively few tech-
niques have been developed to handle colored noise. In
(5], an approach was presented, based on an assumption
that the noise field is invariant to array displacement. In
[15] a MAP approach assuming a completely unknown
Hermitian positive definite noise covariance matrix was
introduced. This estimator was shown in [7] to be in-
consistent, except in special cases. In {13] an MDL ap-
‘proach was proposed, but it also may yield inconsistent
estimates. In [10] and [4] methods suitable to linear uni-
form arrays are proposed, based on an AR model] for the
noise. A spatial ARMA model was employed in {3], and
the noise covariance estimated as a preleminary step. In
[9] an instrumental variable approach is developed, re-
stricted to the case where the correlation time of the
signals is longer than that of the noise. The method de-
scribed in [14] and [2] is based on finding the parameters
that give the ”best fit” between a modelled covariance
and the sample covariance.

In this paper we present a new technique based on
modeling the noise covariance by a a linear parametric
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model. This technique is close in spirit to the method
described in {14] and [2], however, we use a different
criterion for the goodness-of-fit, and consequently get an
estimator that is proved to be asymptotically efficient.
Also, our estimator is computationally simpler. ‘

An additional and different subject investigated in this
paper is the exploitation of prior knowledge that the sig-
nals are uncorrelated, in case such information is avail-
able. We show, not surprisingly, that the prior knowl-
edge about the diagonal structure of the signal covari-
ance matrix can pe exploited by the estimator so as to
reduce the estimation errors, and to allow the array to
cope with more signals. Interestingly enough, it will be
shown that the number of signals that can be detected
and localized by the array may well exceed the number
of sensors. In fact, unlike the augmentation technique
[6] which uses specially structured linear arrays to ob-
tain such an improvement in the detection capability,
our technique enables to obtain this improvement with
arbitrary arrays.

Our solutions to both problems, i.e. colored noise and
uncorrelated signals, are based on what in the statisti-
cal literature is known as the Generalized Least Squares
(GLS) estimator [1]. The resulting estimator is proved
to be both consistent and efficient, i.e. it asymptotically
attains the Cramer-Rao lower Bound(CRB).

2 Problem Formulation

Consider ¢ wave-fronts arriving from sources located at
f1,...,6,, and impinging on an array consisting of p sen-
sors. For simplicity, assume that the sensors and the
sources are all located on the same plane, and that the
sources are in the far-field of the array, so that the wave-
fronts are planar and {6;} represent their Directions-
Of-Arrival{DOAs). Assume also that the sources emit
narrow-band signals all centered around a common fre-
quency. Let s;(t) denote the complex envelope of the i-th
source signal, and let x(t) = (z1(t), z2(t), ..., zp(t))T de-
note the vector of complex envelopes formed from the sig-
nals received by the sensors, with T denoting transposi-
tion. In the presence of additive noise, this received vec-
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tor can be expressed as: x(t) = 3_1_, a(6x)s(t)+n(t),
where a() is the steering vector of the array expressing
its complex response to a planar wavefront arriving from
direction 6, and n(t) is a vector formed from the com-
plex envelopes of the sensor noises. This expression can
be written more compactly as:

x(t) = A(6)s(¢) + n(t) (1)
def

where Odéf(Gl . -9q)T , A(0)=][a(6y),.. -»a(f,)] , and

s(t)(iéf(sl(t),...,sq(t))T . We shall assume that the
steering vectors {a(6)} are known for all § € @ , where
O denotes the field-of-view.

Let the array be sequentially sampled at m time in-
stants t1,...,t, with ng[x(tl), ..+, X(tm)] denoting a
matrix formed from the samples. Now, the problem can
be stated as follows: Given the data X - estimate the
number of sources ¢ and their directions 8.

To solve this problem, we make the following assump-
tions:

Al. The noise samples {n(¢;)} are statisticaly indepen-
dent zero-mean complex-Gaussian vectors, with a
covariance matrix £ given by the following linear

model

2:0121 +0’222+...0}2,‘ (2)
where
{%®,;} are known matrices, and o-déf(al,...,ar) is

an unknown parameter-vector. With no substantial
loss of generality, we shall further assume that o is
real and that {¥,} are Hermitian.
A2. The signal samples {s(t;)} are statisticaly indepen-
dent zero-mean complex-Gaussian vectors indepen-
dent of the noise samples, and having an unknown
Hermitian covariance matrix P.

We also investigate the case where P is a-priori known
to be diagonal. Notice that assumption A2 does not
exclude the possibility of the signals being coherent.

A simple example where the noise model (2) is
valid, is the case where the noises in different sen-
sors are uncorrelated, and their power levels are un-
equal, so that the noise covariance matrix is given by
¥ = diag(o1, 02, -+, 0,) where {o;} denote the unknown
noise power levels. Notice that this structure fits into our
formulation (2), with ¥; = L;, where I;; denotes the ele-
mentary matrix defined as the matrix which has a unity
in its (¢, j)-th position and zeros elsewhere.

Another example is the case of the so-called ”ambient
noise” where the noise is contributed by external sources.
If the spatial distribution of the external sources can be
regarded as ”continuous”, it can be shown [14] that un-
der reasonable conditions the noise covariance can be
modelled by (2), where {%;} are known Hermitian ma-
trices, and {¢;} are real unknowns.

Based on the above assumptions and using (1),(2), the
covariance matrix of the received vector is given by

R(¢) = A(B)PAT(0)+= (3)
= AOPA¥ )+ 013 +0,3:+... 40,5,

where () denotes complex-conjugate transposition, and
¢ represents a real vector formed from all the unknown

parameters, i.e. ¢d§f(0T, l_sT,aT)T, with P denoting a
vector formed from the free real parameters in P, i.e.
the real and the imaginary parts of the upper triangle
entries of P.

From assumptions A1 and A2 it follows that the Max-

imum Likelihood Estimator (MLE) is given by:

J’MLE = argm(;.x{L(«#)}
L$) = -m [1og|R|+tr(R‘1R)+plog7r] (4)
where | - | denotes determinant, tr() denotes trace,

RExxH /m is the sample-covariance matrix, and R is

the array covariance matrix given in (3). Unfortunately,
except for a few special cases, it is impossible to reduce
the maximization dimesionality to q by eliminating P
and o analytically [2] [14]. Therefore, we use a different
approach.

3 The GLS Estimator

The basic idea behind our approach is to select those
parameters ¢ that give the ”best fit” between the
sample-covariance R and the model-covariance R(¢) =
A(0)PAT(8) + =, with the goodness-of-fit criterion be-
ing

Ye) = T~ [a(0)PA%(6) + ] R (5)

where || - ||% denotes the Frobenius norm. The estimator
obtained by minimizing this criterion, i.e.

bors = arg m¢i>n {¢(¢)}

is referred to in the statistical literature as the General-
ized Least Squares(GLS) estimator [1].

Since (5) is quadratic in the elements of P and o, an-
alytical minimization with respect to (w.r.t.) P and o
is possible. First, we minimize with respect to P while
holding @ and o fixed. We then substitute the minimiz-
ing value P(0, o) back into the cost function #(¢), and
minimize with respect to o, thus obtaining an expression
for the cost function that is a function of @ only. The
result is [?]

p R _ e Te-1
GcLs—ngn{Z(O)— >[-8" G g]}
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with G being a matrix and g a vector whose entries are

given by G;; = tr(i,‘ﬁj) - tr(PA(a)izij(a)?jz) and
gi = t[(I- Py g )%.], where £:ER™ B R, and
Pi 0)°‘éfA(AHA)-1AH with A(9)2'R™*A(8).

Similarly, for the case where P is a-priorily known to
be diagonal we get

bgLs = Hgn {¢(6)}

46) = -2 (u-WV Iy [U-WV I WT| - u-WV~lv)

where u and v are vectors whose tintries are given by u; =
Na@)I? 5 i=1,...,q, m =tx(F;) ; i=1,...,r, with
- - —1/2 .
a6) =R / a(6;), and where U,V, and W are matrices
whose elements are given by U;; = |§3'.H(8,~)¢E(9j)|2 ;)=
I,H...,ql V,']' = tr(E,-Ej) ;4] = 1,...,7, VV{j =
a (0,')2]'5(9.,') H 1= 1,...,q ’ j: 1,..:,7‘. .

We have thus reduced the problem dimensionality to
g. The minimization can be efficiently accomplished by
any multidimensional minimization technique. The es-
timators are proved to be consistent and asymptotically
efficient [8].

A necessary condition for the uniqueness of the solu-
tion is p? > ¢ + ¢ 4+ r. For the case of uncorrelated
signals the condition is given by p? > 2¢+r. Notice that
unlike the former condition, the later does not restrict
the number of signals ¢ to be less than the number of
Sensors p.

4 Simulation results

To demonstrate the performance of the proposed estima-
tors we present several simulated experiments, all con-
ducted with a 5-omnidirectional-element uniform circu-
lar array.

In the first experiment we compare the proposed esti-
mator with existing estimator in the case of white noise.
The simulated scenario consisted of two equipower co-
herent Gaussian sources with 10db SNRs located at 100°
and 120°. The phase difference between the signals at
the array center was 90°. The array diameter was 0.6,
leading to a 3-db beamwidth of 26°, approximately. A
set of 100 monte-carlo runs was carried out for each value
of the number of samples, m, with the DOAs estimated
in each run and the RMS DOA error (averaged over the
two sources) computed from the whole set. The results
obtained by using the GLS, the Weighted Subspace Fit-
ting(WSF) {11], the Deterministic ML(DML) [12], and
the ML estimators, along with the CRB (derived in [8])
are displayed in Fig.1. Clearly, the difference in the per-
formance of these estimators is marginal.

In a second experiment we demonstrate the perfor-
mance for unequal noise power levels at the various sen-
sors. The noise covariance was ¥ = o?diag(1,2,4,2,1),

%0
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Figure 1: The RMS DOA error for two equipower co-
herent sources located at 100° and 120° impinging on
a five element uniform circular array with 0.6\ diame-
ter. Spatial noise is white and SNR is 10db. The solid
line represents the CRB. The +, 0, * and - represent the
results of the GLS, WSF, ML, and DML estimators, re-
spectively.

where 0® was chosen so that the SNR measured at the
first sensor is 10db. The GLS estimator, using the noise
model ¥ = diag(cy,...,05), was compared with the
WSF, the ML, and the DML estimators all using a (in-
correct) spatially-white noise model. The results are
shown in Fig.2 and demonstrate the advantage in using
the GLS estimator in this case.

To demonstrate the advantage in exploiting the fact
that the sourced are uncorrelated we show in Fig.3 the
CRB for 4 equipower uncorrelated sources located at
100°, 120°, 140°, 160°. The noise is spatially and tem-
porally white, and the number of snapshots is m = 256.
The dashed line represents the CRB for the first source
DOA error at case the prior knowledge about the lack
of correlation is exploited, whereas the solid line repre-
sents the CRB at case this prior knowledge is not ex-
ploited. Notice that the performance difference is more
conspicous at low SNR.

Next, we demonstrate the capability of the array to
localize uncorrelated signals even if their number ex-
ceeds the number of sensors. The scenario consisted of
6 equipower uncorrelated sources located at 50°, 100°,
.-+ 300°. The array diameter was increased to 1.5,
and the noise was spatially and temporally white. Fig.4
Displays the CRB for the DOA error of the first source.
Notice that, in contrast to the case where the number
of sensors exceeds the number of sources, the error here,
interestingly enough, does not vanish at high SNR val-
ues. (However, it is guaranteed to vanish for high values
of m at a rate of m~1/2),
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Figure 2: Same scenario as in the previous figure ex-
cept that here the spatial noise is non-white, with § =
diag(1,2,4,2,1).
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Figure 3: Four equipower uncorrelated sources located
at 197°, 120° 140°, and 160° impinging on a five els-
ment uniform circular array with 0.6 diameter. Spatial
noise is white, and the number of samples is 256. The

dashed line represents the CRB for the first source for the 1)

case where the sources are a-priori known to be uncor-
related, whereas the solid line represents the case where
this knowledge is not exploited.
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Figure 4: Six equipower uncorrelated sources located at
50°, 100°, 150°, ..., 300°, impinging on a five element
uniform circular array with 1.5) diameter. Spatial noise
is white, and the number of samples is 256. Shown is the
CRB for the first source.
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