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ABSTRACT

When applied to array processing, the Pisarenko harmonic
retrieval method is limited to linear equispaced arrays. We
present an approach that allows to extend it to general ar-
rays. For the ease of exposition, we consider only sparse
linear arrays. Though limited in generality, these arrays
already permit to localize up to N(N — 1)/2 narrow-band
sources with N-sensors. We actually show that the Pis-
arenko approach can be seen as a deconvolution or model-
fitting approach that minimizes an £; norm and can be im-
plemented as a standard linear program. Further extensions
allowing to model and take into account the statistical na-
ture of the data (the estimation errors) are also proposed.

1. INTRODUCTION

The covariance matrix of the outputs of a linear equispaced
array of N sensors is hermitian and Toeplitz. It has 2N — 1
real degrees of freedom and one can localise up to N —~ 1
independent narrowband far-field sources in additive white
noise. If the array is linear but no longer equispaced, the
covariance matrix is hermitian with a constant diagonal, it
can have up to L = N(N ~ 1) + 1 real degrees of freedom
and provided the array manifold is unambiguous, one can
locate up to N(N — 1)/2 sources.

While for linear equispaced arrays, there are parametric
means (ME methods, Pisarenko, min-norm, root-MUSIC..)
to achieve the localization, for non-equispaced arrays no
such systematic approach exists and some kind of search
has to be performed. MUSIC can be applied to such arrays
if the number of sources is smaller than the number of sen-
sors, but MUSIC does not take into account the structure of
the covariance matrix that stems from the array geometry
in the estimation of the signal subspace. The conventional
beamformer (CBF) can handle such arrays without limi-
tation on the number of sources. It uses the information
about the structure of the array in the definition of the
steering vector but its performances are poor for closely
spaced sources.

We apply a model-fitting algorithm to the output of a CBF
that drastically improves these performances. In [3] such a
deconvolution approach has been applied locally to spatial
sectors, here the approach is global and can be interpreted
as an extension of the Pisarenko method to non-equispaced
arrays. It is based on the same premises as the methods pro-
posed in [1] and belongs to the correlation matching spectral
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estimation schemes introduced in [2]. Its implementation
relies on a standard linear programming algorithm.

2. THE MODEL

We consider a linear array having N sensors in position
[0,z1,z2,..zx_1]. The bearings ¢ are measured with re-
spect to broadside. We take as unit of length A/2 and de-
fine the spatial frequencies v as given by v = (sin ¢)/2. The
steering-vector associated with spatial frequency v admits
then the following model :

db‘(u) = [1 eZi‘nuzl e2i1rv.1:2 .
For a scenario with P uncorrelated sources the exact covari-

ance matrix R, of the outputs of the array is then the sum
of P dyads d6(r.)df(v.)* weighted by the source powers a. :

e2i1ruz(N_l)]T (1)

R=3 apds (v5)d0(v)" (2)

p=1

In the presence of additive white noise with variance o2,
one has :
R=R,+521 (3)
This matrix is hermitian with constant diagonal and ele-
ment (k,1) (k # 1) equal to :
P
Til = apez'"”"""-‘ (4)
p=1
where 61 = zx — z; denotes the inter-sensor distance. If
all the elements of {6k, k > 1}, the so-called co-array [4,6],

" are distinct, the matrix has L = N(N — 1) + 1 real degrees

of freedom and one can associate to it a L-dimensional real
vector.
The beamformer output at spatial frequency fis :

U(f) = 57 40°(F)RAO(S) . (%)

For R as in (3), it can be decomposed as :

P

u() =D anPolf = vp) + 3 (®)

p=1

where :

Fo(f=v) = 3z 1d8(/)"d0()* = 5110(0) " d8( f—0)? (7)
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is the output of the beamformer at spatial frequency f for
a source with unit power located at spatial frequency v.
For an equispaced linear array, F,(f) is a shifted version
of the discrete Fejer kernel, the Fourier transform of the
sampled triangle. Note that the shift property holds even
for non-equispaced linear arrays.
If the covariance matrix has L real degrees of freedom, we
propose to take as observations L equispaced samples of the
beamformer output :
y(fi) for fe=%, k=012, ..:i:L—zl- @)
Provided the array is unambiguous, these outputs contain
all the information available. The deconvolution or model-
fitting approach we propose to implement amounts then to
fit to these observations, a weighted sum of a large number,
say M, of similarly sampled regularly shifted version of the
kernel (7) and to evaluate the weights. In matrix notations,
let b be the L-dimensional observation-vector and define
A, the (L, M) matrix having as columns the sampled and
regularly shifted kernels. The difficulty is then to single out
- among the (M — L)-dimensional affine sub-space of solutions
to AX = b, the solution (weights) X that corresponds to
the underlying scenario. Since the number P of sources is
quite small (P € M), one seeks a parsimonious solution
X with positive components. The answer we will arrive to,
is actually quite close to solving the following optimization
problem :

Min || X||, subjectto AX =b,X >0 (9)
in which the noise contribution is not yet taken care of. It
is important to note that all the columns of A should have
the same ¢;-norm.

3. THE SET OF COVARIANCE MATRICES

The covariance matrix R of the output of an arbitrary linear
array of N sensors can be decomposed into the contribution
R, of the sources (2), and the white noise contribution o2 1.
Relation (2) says that R, is a positive linear combination
of dyads. This implies that R, belongs to the closed convex
conical hull of the set of the dyads. This is a closed convex
cone with vertex at the origin whose generating elements are
the dyads. Since the contribution of the additive white noise
can, for instance, be constructed as a convex combination of
L equispaced dyads, it clearly belongs to the interior of the
same cone. The complete matrix R thus always lies in the
interior of the cone. The interior and the boundary of the
cone are quite difficult to define in terms of the covariance
matrix except for very specific sparse linear arrays [4]. The
elements on the boundary of the cone include, but are not
limited to, rank deficient matrices of the form (2).

To each dyad, one can associate a L-dimensional real vec-
tor. The same holds for the covariance matrices R and one
can think of this cone as lying in an L-dimensional subspace
of the N?-dimensional real vector space associated with the
hermitian matrices of order N.

Since the cone is convex, any matrix of the cone can be
represented as a convex combination of L or less indepen-
dent dyads [2], the correlation matching procedure consists

in trying to obtain such a representation for the observed
covariance matrix. It is in general non-unique and each pos-
sible representation is associated with a different extension
of the covariances. However in the case we consider, where
the covariance corresponds to the output of an array and
the sources are assumed to be independent point-sources in
the far-field, a very specific decomposition is sought for.
For P small enough, the contribution of the P dyads asso-
ciated with the sources and the contribution of the white
noise are indeed easy to distinguish. One is in the degen-
erate situation where the global source-contribution lies on
the boundary of the cone. To identify it, one then simply
maximizes the contribution of the noise. This forces the
remainder to lie on the boundary.

Nothing guarantees however that this element on the bound-
ary, which represents the global contribution of the P sources,
has a unique decomposition into P dyads. But this is a dif-
ferent difficulty that concerns the ambiguity of the array
manifold. Even in the case of linear (non-equispaced) ar-
rays, the unicity of the decomposition is a difficult question.

4. IDENTIFIABILITY AND AMBIGUITY

One could also say : invertibility and uniqueness. Provided
the array is un-ambiguous, by invertibility or identifiabil-
ity, we mean the conditions under which the knowledge of
R allows to reconstruct the underlying scenario. The inves-
tigation of (2,4) leads to the following conclusions.

o If P < N, the covariance matrix R (3) is rank deficient
in the absence of noise and one can recover the scenario in
a number of different ways, MUSIC for instance. It is easy
to realize that the noise power is simply the value, of the
possibly multiple, minimal eigenvalue of R.

o If N < P < (L—1)/2, the covariance matrix (3) is full
rank even in the absence of noise and the task is less trivial.
One can however check that that the number 2P + 1 of
unknowns ({ap, ¥p}p=1,.pP, %) is smaller than the number
L of real degrees of freedom. Thus, if the array is un-
ambiguous, it is possible - though less trivial- to identify
the scenario. One has to find a solution to a system of L
non-linear equations in 2P + 1 unknowns.

o If P> (L —1)/2, the task is impossible. The covariance
matrix lies in the interior of the cone even in the absence
of additive noise. The unique decomposition into the sum
of an element on the boundary and the white noise element
leads to an element on the boundary with no relation to the
true scenario.

The maximal number of identifiable sources is thus (L —
1}/2. This is not in contradiction with the generalization of
a theorem of Caratheodory given in [2, appendix B] which,
when applied to linear non-equispaced arrays, says that any
covariance matrix on the boundary of the considered cone
can be reconstructed as a convex combination of at most
(L — 1) generating elements. This theorem only gives an
upper-bound on the number of elements that is required.
In the algorithm described below, once on the boundary we
will indeed generically require (L — 1) dyads, but this will
be the case because we discretize the spatial frequency do-
main, because we replace the original cone by a polyhedral
cone. Each true dyad (source) is then interpolated by a
couple of neighboring dyads (sources).
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Little is known about conditions on the coarray that guar-
antee the uniqueness of the solution. Non-uniqueness or
ambiguity means that an element R, on the boundary of the
cone (corresponding thus to P < (L — 1)/2 in (2)) has not
an unique decomposition into generating elements (dyads).
Even for linear arrays, the study of ambiguity is a difficult
task and only few sufficient conditions for non-ambiguity
or necessary conditions for ambiguity are available. Am-
biguity appears trivially for linear equispaced arrays with
inter-sensor distance greater than A/2. This corresponds to
undersampling. Some specific unambiguous non-equispaced
linear arrays are known as for instance the minimum re-
dondancy linear arrays [4]. A non-trivially ambiguous non-
equispaced linear arrays is analysed in [5}. .
In the simulations presented later, we will consider a mini-
"mum redondancy linear array. Such arrays are trivially non
ambiguous and the number of identifiable sources is easily
deduced from the cardinality of the co-array.

5. DEVELOPMENT

Note that fitting a model to the covariance matrix or to the
outputs of the CBF is equivalent provided the two quan-
tities are in a one-to-one relation. This is the case for a
general non-equispaced un-ambiguous array if the number
of evaluated beams is equal to the number L of real degrees
of freedom of the covariance matrix. Therefore instead of
matching the complex covariances (4), we will match the L
real CBF outputs (8).

The description given in section 3. about the structure of
the set of the covariance matrices can be transposed on the
CBF-side : all potential CBF-outputs belong to the positive
cone whose generating functions are Fo(f —») (7). And any
CBF-output that corresponds to an invertible scenario can
be represented as the sum of P weighted and shifted gener-
ating functions and the constant contribution of the noise
(6). The generating function is the discrete Fourier trans-
form of the weighted covariance sequence that is known only
on the coarray.

Following these investigations upon the structure of the co-
variance matrices, we propose to modify algorithm (9) de-
veloped from a straight-forward model-fitting philosophy in
which the noise contribution had not yet been taken into
account.

We compute the output of the CBF at L equispaced spatial
frequencies (8) and store these quantities in an L-dimensional
real vector b. Our aim is to rewrite this vector as the sum
(6) of a “white-noise” contribution of maximal amplitude
and the smallest possible number of similarly-discretized
frequency-shifted weighted CBF-kernels (7). This amounts
to find a solution of a highly non-linear system of L equa-
tions. Though the solution we seek is well defined and gen-
erally unique, it is difficult to obtain and would require an
initialization procedure.

We thus decide to discretize the spatial frequencies (bear-
ings) i.e. assume that the sources can only be located at the
M nodes of a grid in the spatial frequency range ] - 1, +3[.
This amounts to replace the original cone by a polyhedra.l
cone defined by regularly spaced basis elements. We also ex-
plicitly add to these basis elements an element representing

the noise contribution. On the CBF-side, the contribution
of the noise is a constant, the same on all the beams. Maxi-
mizing this constant pushes the remainder on the boundary
of the polyhedral cone which coincides with the boundary
of the original cone only at the nodes. A sufficiently dense
uniform sampling of the spectral support allows to approx-
imate the original cone and its boundary to arbitrary pre-
cision and to reduce the bias at will.

This implementation of the decomposition problem leads to
a standard linear program, quite similar to (9), for which
efficient algorithms (e.g. the simplex method) that converge
to a global optimum are available :

Max v subject to: AX+vl=b, X2>0,v>0 (10)
where : b is an L-dimensional vector containing the out-
puts of the CBF (8), Ais an (L, M) matrix (M » L) the
columns of which contain the shifted and sampled generat-
ing functions (7), 1 is a column-vector of one’s modeling the

white noise contribution and v models the noise variance.

Some remarks are in order.

¢ If there are feasible points, the problem has a solution.
There is always a solution, say (X*,v*) at a vertex of the
domain. This means that there is a solution with at most
L strictly positive components. Since v* is always (strictly)
positive, there are at most L — 1 components of the M-
dimensional (weighting) vector X* that are positive.

¢ Due to the dlscretlza.tlon of the spatial frequencies (bear-
ings) with a step-size M, a single source will systemati-
cally be reconstructed by the two neighboring nodes. I —1
positive components in X* thus allow to localize at most
(L — 1)/2 sources. This is also the maximal number of ad-
missible sources for invertibility reasons. (see section 4.)

o The spatial frequency to be attributed to a source as-
sociated with two such positive X*-components is easily
obtained from an interpolation of the “indices” of the com-
ponents. The amplitude is obtained from the values of the
components.

o Strictly speaking, the 2 neighboring elements never allow
to exactly reconstruct a missing generating function, other
elements (distributed over the domain) contribute also. The
amplitude of these further contributing elements can be
monitored by choosing the discretization step % This step
should also be chosen in accordance with the accuracy one
expects or seeks from the array.

¢ The solution (X*,v*) may have less than L strictly posi-
tive components. Such a solution is termed degenerate, but
standard softwares can handle this case. Remember that
the Pisarenko approach has (also) some difficulties in han-
dling such situations where the number of sources is less
than the maximum admissible.

¢ In practice only an estimate & of b is available. The
algorithm will then generically use the maximal number
(L—1)/2 of sources in the reconstruction. The problem then
is to decide whether a source with low amplitude is indeed
a source or is induced by the noise, the estimation error and
the discretization step. Deciding how many sources there
are, or which sources are true ones, is a detection problem.
An a priori evaluation of the detection threshold of the ar-
ray should thus be performed and allow to take a decision
by looking at the amplitudes.
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6. SIMULATION RESULTS

We apply the approach described above to simulated data.
Thus only an estimate of R, obtained from 7' observations
(the snapshots), is available : R = % Z:Z;l XeX;. The
“exact” representation defined above is thus perturbed by
the estimation error due to the finite number of observa-
tions. One should no longer seek an exact solution of the
set of equations (10) and introduce a distance taking into
account the statistical properties of the observations.

We consider a minimum redondancy linear array with 4
sensors [4][1]. The sensors are at positions {0, 1,4, 6} (half
wavelengths) and the exact covariance matrix R has L = 13
real degrees of freedom. An estimate R is obtained from
T = 100 snapshots. It is used to evaluate the CBF at
13 equispaced bearings (8) and to form b. We take a ma-
trix A in (10) with 13 rows and M = 143 columns which
corresponds to a discretisation step in spatial frequency of
ﬁ o 7.107%, The sensitivity with respect to this param-
eter is quite low : taking M = 91 leads to strictly similar
results but the spurious sources get stronger though always
smaller in amplitude than the true sources. The scenario
consists of 2 sources that have a common SNR of 0 dB with
respect to the white noise (a1 = a; = 1 and 02 = 1 in (2),
(3)). We simulated 2 different situations : -in one case the
2 sources are at spatial frequencies 0 and .1 (0 and 11.5
degrees) and -in the second case the spatial frequencies are
0 and .06 (0 and 6.9 degrees). The means and standard de-
viations of the estimated spatial frequencies, obtained from
50 independent trials, are given in row 5 and 6 of Table 1
below.

source number 1 2 1 2
source power in dB 0 o 0 0
spatial frequency 0 1 0 .06
bearing in degrees 0 11.5 0 6.9

estimated spatial freq. | .0006 | .0999 || -.018 | .061

standard deviation .0126 | .0141 .061 .019

estimated spatial freq. | .0015 | .1012 || .0009 | .0615

standard deviation .0067 | .0057 ]| .0104 | .0118

Table 1: Results over 50 trials for 2 two-sources secnarios

In the last 2 rows, we give the results obtained on strictly
the same data with a slightly different algorithm, closer to
(9) that takes into account the existence of estimation er-
rors. The improvment is most sensitive in the standard de-
viations that are quite smaller and thus comparable to the
Cramer-Rao bounds. The linear programming algorithm
used is taken from the NAG-library and the initial weight-
ing vector X (in (10)) is taken equal to 0.

The covariance matrix R of the array we consider, contains
indeed the covariances {rx,k =0, 1,..,6}. This means that
with R, one could built an order 6 Toeplitz covariance ma-
trix and apply standard localization algorithms. This is
absolutly not a necessity for our approach and has been
chosen to ease comparisons and to be sure that the array
presents no ambiguity. The reader can check with Table 1
that other algorithms have quite poorer performances.

If despite the presence of the noise, the vector associated
with the estimated covariance matrix is not in the interior of
the cone the program (10) has no feasible sclution. To avoid
this situation we always add a positive constant to I;, le. we
replace the constraint AX + vl =bby AX +vl =b+al.
This does not modify the solution X*.

7. CONCLUSIONS AND EXTENSIONS

Several modifications of the approach or extensions to other
problems can be developed. As far as the localization prob-
lem considered here, is concerned, one should introduce the
statistical properties of the observations and define a dis-
tance to be minimised or a likelihood to be maximised. The
standard statistical model used in the array processing con-
text leads to a CBF-output vector b that is asymptotically,
in the number T of snapshots, gaussian with a covariance
matrix that can be estimated from R. Returning to the
model-fitting or deconvolution interpretation (9) of the al-
gorithm, one can modify the problem formulation in several
different ways to allow the linear programming procedure
to use this information. The results of one of these modi-
fications are presented at the bottom in Table 1. In some
sense, one can identify part of the noise realisation in the
CBF-outputs b. This allows also to handle the situation
where the noise sub-space has dimension greater than one
[7], not generally considered in the Pisarenko approach and
amounts to substract more than just Aminl from the esti-
mated covariance matrix.
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