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ABSTRACT

There exist real world applications in which impulsive chan-
nels tend to produce large amplitude interferences more fre-
quently than Gaussian channels. The stable law has been
shown to successfully model noise over certain impulsive
channels. In this paper, we propose subspace-based meth-
ods for the direction-of-arrival estimation problem in impul-
sive noise environments. We define the covariation matrix of
the array sensor outputs and show that eigendecomposition-
based methods, such as the MUSIC algorithm, can be ap-
plied to the sample covariation matrix to extract the bear-
Ing information from the measurements.

1. INTRODUCTION

The majority of subspace-based, high resolution methods
for direction finding in array processing has been based on
the assumption of Gaussian distributed signals and noise.
In [1] we introduced optimal (in the ML sense) approaches
to the direction-of-arrival (DOA) estimation problem in the
presence of impulsive noise environments. The analysis was
based on the assumption that the additive noise could be
modeled as a complex symmetric a-stable (SaS) process.
The optimal ML techniques employed in [1] are often re-
garded as exceedingly complex due to the high computa-
tional load of the multivariate nonlinear optimization prob-
lem involved with these techniques. Hence, sub-optimal
methods need to be developed for the solution of the DOA
estimation problem in the presence of impulsive noise, when
reduced computational cost is a crucial design requirement.

In this paper, we present subspace source localization
methods based on geometrical properties of the data model.
Considerable research has been done in this area under the
framework of Gaussian distributed signals and/or noise [2].
The better known of the so-called eigenvector-based meth-
ods are the MUSIC [3], Minimum Norm [4], and the ES-
PRIT method [5]. These methods estimate the bearings of
the source signals by performing an eigendecomposition on
the spatial covariance matrix of the array sensor outputs.
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Studies concerning the statistical efficiency of the most pop-
ular eigendecomposition-based method, namely the MUSIC
algorithm, have been done in [6]-[7]. The relationship be-
tween the MUSIC and ML methods has also been studied in
(6]. Since Sa.S processes do not possess finite pth order mo-
ments for p > «, traditional subspace techniques employing
second- and higher-order moments [8] cannot be applied
in impulsive noise environments modeled under the stable
law. Instead, properties of fractional lower-order moments
(FLOM’s) and covariations should be used.

The paper is organized as follows: In Section 2, we
present some necessary preliminaries on a-stable processes.
In Section 3, we discuss the development of subspace tech-
niques in the presence of a-stable distributed signals and
noise. The analysis is based on the formulation of the co-
variation matrix of the array sensor outputs. Finally, sim-
ulation experiments are presented in Section 4 and conclu-
sions are drawn in Section 5.

2. MATHEMATICAL PRELIMINARIES

In this section we introduce the statistical model that will
be used to describe the additive noise. The model is based
on the class of isotropic SaS distributions, and is well-
suited for describing impulsive noise processes.

Stable processes satisfy the stability property which
states that linear combinations of jointly stable variables
are indeed stable. They arise as limiting processes of sums
of independent, identically-distributed random variables via
the generalized central limit theorem. They are described
by their characteristic exponent «, taking values 0 < a < 2.
Gaussian processes are stable processes with o = 2. Sta-
ble distributions have heavier tails than the normal distri-
bution, possess finite pth order moments only for p < «,
and are appropriate for modeling noise with outliers. The
main reason for the difficulty in developing signal processing
methods based on stable processes is due to the fact that
the linear space of a stable process is not a Hilbert space,
as in the case of Gaussian processes, but either a Banach
(1 < a < 2) or a metric space (0 < a < 1) both of which
are more unyielding in their structure. An extensive review
of the SaS family can be found in [9]. Here, we focus on
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the elements useful for our analysis later on the paper.

A complex random variable (r.v.) X = Xi + 73Xz is
isotropic SaS if X; and X, are jointly SaS and have a
symmetric distribution. The characteristic function of X is
given by

p(w) = E{exp(IRwX ]} = exp(—7|w|%), (1)

where w = wy + jw2. The characteristic exponent o is re-
stricted to the values 0 < a < 2 and it determines the
shape of the distribution. The smaller the characteristic
exponent a, the heavier the tails of the density. The dis-
persion v (v > 0) plays a role analogous to the role that
the variance plays for second-order processes. Namely, it
determines the spread of the probability density function
around the origin.

Several complex r.v.’s are jointly Sa.S if their real and
imaginary parts are jointly Sa.S. When X and Y are jointly
SaS with 1 < a < 2, the covariationof X and Y is defined
by
E { Xy<e-1> }

a = T vl ) < ’
[X,Y] ZvpEy T 1Sp<e (2)
where vy = [Y, Y]« is the dispersion of the r.v. Y, and we
use throughout the convention Y<P> = |YV|P~!Y*. Also,
the covariation coefficient of X and Y is defined by
_[X,Y]a

Ax,y = AN 3)

and by using (2), it can be expressed as
E{XY<r~1>}
Axy=—"2—2_ 1 fri<p<a. 4
EQVF) @

The covariation of complex jointly SaS r.v.’s is not gener-

ally symmetric and has the following properties :

P1 If X;, X; and Y are jointly Sa.S, then for any complex
constants a and b,

[aX1 +bXa2, Y]a = G[Xx, Y]a + b[X21 Y]a;

P2 If Y1 and Y, are independent and X;, X2 and Y are
jointly SaS, then for any complex constants a, b and
<,

[aX,, b1 +cY2la =
ab<*">[X1, Yila + ac<* ' [X1, Yol

P3 If X and Y are independent Sa.S, then [X,Y]s = 0.

3. SUBSPACE TECHNIQUES IN THE
a-STABLE FRAMEWORK

Consider an array of r sensors that receive signals generated
by ¢ narrow-band sources with center frequency w and loca-
tions 81,82,...,8,. Since the signals are narrow-band, the
propagation delay across the array is much smaller than the
reciprocal of the signal bandwidth, and it follows that, by
using a complex envelop representation, the array output
can be expressed as

x(t) = A(@)s(t) +n(t), 1<t<M, (5)

where s(t) is the vector of signals emitted by the sources as
received at the reference sensor of the array, n(t) is the noise
vector and A (@) is the r X g matrix of the array steering
vectors
A(©) = [a(81), .., a(8,)]. (6)

We assume that the ¢ signal waveforms are noncoher-
ent, complex isotropic SaS random processes with diago-
nal covariation matrix I's = diag(vs,,...,7s,). Also, the
noise vector n(t) is a complex SaS random process with the
same characteristic exponent « as the signals. The noise
is independent of the signals and has covariation matrix
'y =mlL

We can write (5) as follows:

x(t) = w(t) + n(t), (7)

where w(t) = A(O©)s(t). By the stability property, it fol-
lows that w(t) is also a complex Sa.S random vector, inde-
pendent of n(t), with components:

wi(t) = Ai(©)s() = D _ ai(8k)s(t). ®)

k=1

Now, we define the covariation matriz of the observation
vector x(t) as the matrix whose elements are the covari-
ations [zi(t),z;{t)]a of the components of x(t). We have
that

[zdt),z;(O)]a = [wi(t) + ni(t), wi(t) + n;(t)]a
[wi(t), wj(t)]a + [wi(t), nj(8)]a +
[ni(8), w;i(B)]a + [n:(¢), 05 (D)]a-  (9)

By the independence assumption of w(t) and n(t), and by
property P3 we have that

[wi(t), n;(B)]a =0, [ni(t), wj(t)]a = 0. (10)

Also, by using (8) and properties P1 and P2 it follows that

[wit) w; (O] = [Y ai(0x)sk(e),w;(t)]a

= Z ai(6x)[sk(t), w;(t)]a

= Z ai(0x)[sk(t), Z a;(8)s1(t)]a

k i=1
q
= 2 a()a T B, (11)
k=1

where v,, =[Sk, Sk]a. Finally, due to the noise assumption
made earlier, it holds that

[ni(t), n;()]a = 1ndi;, (12)

where §; ; is the Kronecker delta function. Organizing (9)-
(12) in matrix form we get the following expression for the
covariation matrix of the observation vector:

[x(t), x(t)]a = A(@)TsAS*T7(@) + 721, (13)
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where the (i, 7)th element of matrix A<*~'>(@) results
from the (j,i)th element of A(©) according to the oper-
ation

[A<u-l>(®)]i’1 — [A(e)]<‘_a—1> — I[A(@)]J,"_ '0—2 [A(@)];,.‘ .

7

Clearly, when a = 2, i.e., for Gaussian distributed signals
and noise, the expression for the covariation matrix is re-
duced to the well-known form of the covariance matrix.

When the amplitude response of the sensors equals unity,
i.e., for steering vectors of the form

a(ak) = [1, e—Jwrz(Gk)’ ) e—-:w-r,.(ek)]T
it follows that
() X0 = A@TAT©) 4L, (19

Hence, in this case, subspace techniques such as the MUSIC
algorithm can be applied to the covariation matrix of the
observation vector to extract the bearing information. We
will refer to the new algorithm resulting from the eigen-
decomposition of the array covariation coefficient matrix
as the Robust Covariation-Based MUSIC or ROC-
MUSIC.

In practice, we have to estimate the covariation matrix
from a finite number of array sensor measurements. A pro-
posed estimator for the covariation coefficient Ax,y is called
the fractional lower order (FLOM) estimator and is given
by [9] Zﬂ <p—-1>

3 _ i=1 X'Y' i

Ax,y Vi (15)
for some 1 < p < a and independent observations (X}, Y;)
s+« 3 (Xn, ¥a). Unfortunately, this estimator, although it is
unbiased, it has large variance. To circumvent this difficulty
we introduce the modified covariation coefficient function

E{Xy<r-1>}
E{ly|r}

for 1/2 < p < @ if X and Y are real SaS random vari-
ables, and 0 < p < o if X and Y are complex isotropic
SaS random variables. This modified covariation coeffi-
cient function is well defined (finite) for the aforementioned
values of the parameter p, as shown in [10]. The simulation
experiments in the following section give some significant
insight on the performances of the MFLOM estimator and
the proposed ROC-MUSIC algorithm.

Ax,y(p) = (16)

4. SIMULATION RESULTS

We performed two simulation experiments to assess the per-
formance of the MFLOM estimator and to compare the
MUSIC and ROC-MUSIC algorithms.

4.1. Experiment #1

The purpose of this experiment is to study the influence of
the parameter p to the performance of the MFLOM estima-
tor of the covariation coefficient. Tworeal Sa$ (1 < a < 2)
random variables, X and Y, are defined as

X =anl + anly,

standard deviation

Figure 1: Standard deviation of the MFLOM estimates of
the modified covariation coefficient as a function of the pa-
rameter p.

Y =a21U1 + axUs,

where Uy, and U, are independent, SaS random variables.

The model coefficients {a:;; 1,7 = 1,2} are given by
—0.75 0.25

[aiy] = [ 0.18  0.78 ] : (17

It follows that the true covariation coefficient A of X with
Yis

\= 011(12(1';'_1> + 01202<2°_1>
ja21]® + |azz|®

We generated n = 5,000 independent samples of U;, U>
and Us and we calculated the MFLOM estimator by means
of the expression

(18)

Yoo, XY <P

i=1
Zi:l IKIP

for different values of p in the range [0,2]. We run K =
1,000 Monte Carlo experiments. Figure 1 shows the stan-
dard deviation of the MFLOM estimator of the modified
covariation coefficient as a function of the parameter p,
and for different values of the characteristic exponent a.
As we can see, for the case of non-Gaussian stable signals
(1 < & < 2), values of p in the range (1/2, a/2) result into
the smallest standard deviations. For Gaussian signals the
optimal value of p is 2 and the resulting MFLOM estimator
is simply the least-squares estimator, as expected.

(19)

Amrrom(p) =

4.2. Experiment #2

In this experiment, we compare the performance of the MU-
SIC and the proposed ROC-MUSIC algorithms in the pres-
ence of simulated Sa S noise. The sample covariation coeffi-
cient matrix (SCCM), as estimated by (19), is not symmet-
ric and hence it has complex eigenvalues in general. The
more snapshots are available at the array sensors, the more
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Figure 2: Bias and standard deviation of the estimators of
DOA as a function of the characteristic exponent «.

nearly symmetric SCCM becomes. We come around this
problem by performing the eigenvalue decomposition to the
sum of the sample covariation coeflicient matrix and its con-
Jjugate.

The array is linear with five sensors spaced a half wave-
length apart. A single source is positioned at 20°. The
noise is assumed to follow the complex isotropic SaS dis-
tribution with dispersion vy = 1. The so-called generalized
signal-to-noise ratio GSNR = 1010g(;1ﬁ EZI [s(t)]?) is
equal to 0dB. The number of snapshots available to the al-
gorithms is M = 50. In every experiment we perform 100
Monte-Carlo runs and compute the bias and the standard
deviation of the DOA estimates. We use two values of the
parameter p in the estimation of the covariation (c.f. (19)):
p=08and p=04.

The results are depicted in Figure 2. All the curves
are functions of the characteristic exponent «a of the noise.
Clearly, for very impulsive environments (a < 1.6) MUSIC
exhibits very large bias and standard deviation. On the
other hand, for less impulsive noise (o > 1.8), MUSIC and
ROC-MUSIC have comparable performances. Comparing
the ROC-MUSIC curves in Figure 2, we see that for o < 1.4
the choice of p = 0.4 gives smaller standard deviation while
for o > 1.4 the choice of p = 0.8 gives better results. This is
consistent with the results of the previous experiment and
shows that values of p in the range (1/2, o/2) give estima-
tors with smaller variances.

5. CONCLUDING REMARKS

We have formulated the covariation matrix of the array out-
puts for the case of Sa.S signals and noise. We showed that
for the special case of array sensors with unit amplitude
response, the covariation matrix has similar form to the co-
variance matrix of Gaussian distributed signals. Therefore,
subspace-based bearing estimation techniques can be ap-
plied to the covariation matrix resulting to improved bear-
ing estimates in the presence of impulsive noise environ-
ments.
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