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ABSTRACT

The main goal of this paper is to describe and analyse, in
a unifying manner, the spatial and temporal IV-SSF ap-
proaches recently proposed for array signal processing in
colored noise fields. (The acronym IV-SSF stands for “In-
strumental Variable — Signal Subspace Fitting”). We derive
a general, optimally-weighted, IV-SSF direction estimator
and show that this estimator encompasses the UNCLE esti-
mator of Wong and Wu, which is a spatial IV-SSF method;
and the temporal IV-SSF estimator of Viberg, Stoica and
Ottersten. The latter two estimators have seemingly dif-
ferent forms, so their asymptotic equivalence shown in this
paper comes as a surprising unifying result.

1. INTRODUCTION

In recent years, a number of methods for direction finding
in unknown colored noise-fields have been proposed, e.g.
[1]. Herein, the combined Instrumental Variable - Signal
Subspace Fitting (IV-SSF) approach is considered. The
IV-SSF technique has a number of appealing advantages
over other methods, including [2, 3): 1) The IV-SSF can
handle noises with arbitrary spatial covariances, under mi-
nor restrictions on the signals or the array. In addition, the
IV-SSF do not estimate a noise model — which makes them
statistically more robust and computationally simpler than
the approaches relying on noise modelling. 2) The IV-SSF
approach is applicable to both non-coherent and coherent
signal scenarios. 3) The spatial IV-SSF can make use of the
information contained in the output of a completely uncali-
brated subarray, under certain weak conditions, which other
methods cannot.

Depending on the type of “instrumental variables” used,
two classes of IV-SSF methods have been proposed:

a) Spatial IV-SSF, for which the instrumental variables
are derived from the output of a (possibly uncalibrated)
subarray whose noise is spatially uncorrelated with the noise
in the main calibrated subarray under consideration [2].

b) Temporal IV-SSF, which obtain instrumental vari-
ables from the delayed versions of the array output, under
the assumption that the temporal-correlation length of the
noise field is shorter than that of the signals [3].

The previous literature on IV-SSF has treated and anal-
ysed the above two classes of spatial and temporal meth-
ods separately, ignoring their common basis. In this paper
we reveal the common roots of these two classes of DOA
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estimation methods and study them under the same um-
brella. Additionally, we establish the statistical properties
of a general weighted IV-SSF method and derive the opti-
mal weights that minimize the DOA estimation errors, In
particular, we prove that the optimal four-weight spatial
IV-SSF of [2] and the optimal three-weight temporal IV-
SSF of [3] are asymptotically equivalent when used under
the same conditions.

2. PROBLEM FORMULATION

Consider a scenario in which n narrowband plane waves,
generated by point sources, impinge on an array compris-
ing m calibrated sensors. Assume, for simplicity, that the
n sources and the array are situated in the same plane. Let
a(f) denote the array response to a unit-amplitude signal
with a DOA parameter equal to 8. Under these assump-
tions, the output of the array, y(t) € C™*!, can be de-
scribed by the following well-known equation [4]

y(t) = Az(t) + e(t) 1)

where z(t) € C**! denotes the signal vector, e(t) € C™*!
is a noise term, and

A=[a(6) - a(b,)] (2)

Hereafter, 8, denotes the kth DOA parameter.

The following assumptions on the quantities in the array

equation, (1), are considered to hold throughout the paper.
A1. The signal vector x(t) is a normally distributed random
variable with zero mean and a possibly singular covariance.
The signals may be temporally correlated; In fact the tem-
poral IV-SSF approach relies on the assumption that the
signals exhibit some form of temporal correlation (see be-
low for details).
A2. The noise e(t) is a random vector that is temporally
white, uncorrelated with the signals and circularly symmet-
ric normally distributed with zero mean and unknown co-
variance matrix! Q > O,

Ele(t)e’(s)] = Qd.e; Ble®e™)]=0  (3)

!Henceforth, the superscript “#” denotes the conjugate trans-
pose; whereas the transpose is designated by a superscript “T™”.
The notation A > B, for two Hermitian matrices A and B, is
used to mean that (A — B) is a nonnegative definite matrix.

2088



A3. The manifold vectors {a(f)}, corresponding to any set
of m different values of 8, are linearly independent.

Note that assumption A! above allows for coherent sig-
nals, and that in A2 the noise field is allowed to be ar-
bitrarily spatially correlated with an unknown covariance
matrix. Assumption A#is a well-known condition that, un-
der a weak restriction on m, guarantees DOA parameter
identifiability in the case Q is known (to within a multi-
plicative constant). When Q is completely unknown, DOA
identifiability can only be achieved if further assumptions
are made on the scenario under consideration. The follow-
ing assumption is typical of the IV-SSF approach.

A4. There exists a known vector z(t) € C™*!, which is
normally distributed and satisfies

E[z(t)e’(s)] =0 for t<s (4)
E[z(t)eT(s)] =0 for all ¢,s (5)
Furthermore, denote
T =E[z(t)z"(f)] (mxn) (6)
Ai=rank(') <m. (7

It is assumed that no row of I is identically zero and that
the inequality
Ai>2n—m (8)

holds. (note that a rank-one I' matrix can satisfy the con-
dition (8) if m is large enough, and hence the condition
in question is rather weak). Owing to its (partial) uncor-
relatedness with {e(t)}, the vector {z(¢)} can be used to
eliminate the noise from the array output equation (1), and
for this reason {z(f)} is called an Instrumental Variable
(IV) vector. Below, we briefly describe two possible ways
to derive an IV vector from the available data measured
with an array of sensors.

Example 2.1 Spatial IV

Assume that the n signals, which impinge on the main
(sub)array under consideration, are also received by another
(sub)array that is sufficiently distanced from the main one
so that the noise vectors in the two subarrays are spatially
uncorrelated with one another. Then 2(t) can be made from
the outputs of the sensors in the second subarray (note that
those sensors need not be calibrated) 2, 5]. O

Example 2.2 Temporal IV

When a second subarray, as described above, is not available
but the signals are temporally correlated, one can obtain
an IV vector by delaying the output vector: z(t) = [y7 (t -
1) yT(t —2) --- ]F. Clearly, such a vector z(t) satisfies
(4)-(5) and it also satisfies (8) under weak conditions on
the signal temporal correlation. This construction of an
IV vector can be readily extended to cases where e(t) is
temporally correlated, provided that the signal temporal
correlation length is longer than that corresponding to the
noise [3]. a

The problem considered in the following sections con-
cerns the estimation of the DOA vector

0=1[6,---6,]7 (9)

given N snapshots of the array output and of the IV vector,
{y(t), z(t)}{L,. The number of signals, n, and the rank of
the covariance matrix I', 7, are assumed to be given (for
the estimation of these integer-valued parameters by means
of IV/SSF-based methods. we refer to [6]).

3. THE IV-SSF APPROACH

Define the “weighted IV sample cross-covariance matrix” as

N
R=w, [% Z z(t)y'(t):l Wr (mxm) (10)

t=1

where W1, and W are two nonsingular Hermitian weight-
ing matrices which are possibly data-dependent (as indi-
cated by the fact that they are roofed). Under the assump-
tions made, as N — oo, R converges to the matrix:

R=W_Ez()y ()] Wr=W_ TA"Wpg (11)

where W and Wpg are the limiting weighting matrices
(assumed to be bounded and nonsingular). Owing to as-
sumptions A2 and A3,

rank (R) =7 (12)

Hence, the Singular Value Decomposition (SVD) of R can
be written as

R=[U?][A OHS*

0 o > ]:UAS‘ (13)

where U'U = §*S = I, A € R™™" is diagonal and
nonsingular, and where the question marks stand for blocks
that are of no importance for the present discussion.

The following key equality is obtained by comparing the
two expressions for R in (11) and (13) above:

S =WgrAC (14)

where C £ T*WLUA"! € C™*" has full column rank. For
a given S, the true DOA vector can be obtained as the
unique solution to (14) under the parameter identifiability
condition (8) (see, e.g., [7]). In the more realistic case when
S is unknown, one can make use of (14) to estimate the
DOA vector in the following steps.

The IV step: Compute the weighted IV sample cross-
covariance matrix R in (10), along with its SVD:

R:[f]?][é?][%‘] (15)

Note that fJ, A and § are consistent estimates of U, A and
S in the SVD of R.

The SSF step: Estimate the DOAs by minimizing the
following signal subspace fitting criterion:

ngn{mci’n[vec (§ - WRAC)]" V[vec (§ — WrAC)]} (16)

where V is a positive definite weighting matrix, and “vec” is
the vectorization operator?. Alternatively, one can estimate

2If o) is the kth column of a matrix X, then vec(X) =

[;ET mg‘ < 7T

2089



the DOAs as the minimizing arguments of the following
criterion:

main{lvec(B'v*v;‘é)rw[vec(B*W;’Sm (17)

me(m—n)

where W is a positive definite weight, and B €
is a matrix whose columns form a basis of the null-space
of A* (bhence, B*A = 0 and rank (B) = m — n). The al-
ternative fitting criterion above is obtained from the simple
observation that (14) along with the definition of B imply
that

B'WZ'S=0 (18)

In [8), it is shown that the classes of DOA estimates
dertved from (16) and (17), respectively, are asymptotically
equivalent. More exactly, for any V in (16) one can choose
W in (17) so that the DOA estimates obtained by minimiz-
ing (16) and, respectively, (17) have the same asymptotic
distribution; and vice-versa.

In view of the previous result, in an asymptotical analy-
sis it suffices to consider only one of the two criteria above.
In the sections to follow we focus on (17). Compared with
(16), the criterion (17) has the advantage that it depends on
the DOA only. On the other hand, for a general array there
is no known closed-form parameterization of B in terms of
6. However, it turns out that this is no drawback since the
optimally weighted criterion (which is the one to be used
in applications) is an explicit function of @ (see the next
section).

4. THE OPTIMAL IV-SSF METHOD

In what follows, we deal with the essential problem of choos-
ing the weights W, W and WL in the IV-SSF criterion
(17) so as to maximize the DOA estimation accuracy. First,
we optimize the accuracy with respect to W, and then with
respect to W and Wr.
Define . 1a
g(8) = vec(B*"Wpy' S) (19)

and observe that the criterion function in (17) can be writ-

ten as, .
g (0)Wg(0) (20)

In [8] we show that g(@) (evaluated at the true DOA vector)
has, asymptotically in NNV, a circularly symmetric normal
distribution with zero mean and the following covariance:

G(6) = 1 (WLUA™) R.(W.UA™)" ® B"R, B]

where ® denotes the Kronecker matrix product; and where,
for a stationary signal s(t),

R, =E[s(t)s"(?)]

Then, it follows from the ABC (Asymptotically Best Con-
sistent) theory of parameter estimation [9] that the mini-
mum variance estimate, in the class of estimates under dis-
cussion, is given by the minimizing argument of the criterion

in (20) with W = G~ (6), that is

1

£(6) =g (6)G™ (6)9(6) (21)

where

1

&) = %[(mm- ) (W, UA YT ® B R, B]

and where R, and R, are the usual sample estimates of R,
and R,. Furthermore, it is shown in [8] that the minimum
variance estimate, obtained by minimizing (21), is asymp-
totically normally distributed with mean equal to the true
parameter vector and the following covariance matrix:

H= (R {¥00™})" (22)

Here, © denotes the Hadamard-Schur matrix product and
the matrices ¥ and €2 are defined as

¥ = D'R;V’O; ., R;'°D (23)

-1/ A
Y
Q = D'W UU WLRW U 'UW.T (24)

where Y ~!/? denotes a Hermitian (for notational conve-
nience) square root of the inverse of a positive definite ma-
trix Y and the matrix D is made from the direction vector
derivatives,

8a(0%)

D = [dl e dn]y dk = 39k

Finally, for a full column-rank matrix X, the projection
operator IIx is defined as
Oy =I-Ix; Ox=X(X"X)"'X" (25)
The optimal weights W and W are, by definition,
those which minimize the limiting covariance matrix H of
the DOA estimation errors. It follows from (22)-(24) and
the properties of the Hadamard-Schur product, that the op-
timal weighting matrices are found by maximizing €. Since
the matrix T has rank 7, it can be factorized as follows:

T =I,T; (26)

where both I'; € C™*® and I’ € C™*" have full column
rank. Insertion of (26) into the equality W, TA*"Wpr =
UAS" yields

w. . I/'/T=U (27)
where T = T3 A*"W gSA™! € C**" is a nonsingular trans-
formation matrix. By using (27) in (24), we obtain:

Q=T(TiWil)(DIWIR. Wil) {(ITWiIl)I5

Observe that §2 does not actually depend on W r. Hence,
W g can be arbitrarily selected, as any nonsingular Hermi-
tian matriz, without affecting the asymptotics of the DOA
parameter estimates.

Concerning the choice of Wy, it is easily verified [8] that

Q< Qly, _g-ie= I(T;R;'T)I; =T"R;'T (28)

Hence, W = 1?;1/ ?> maximizes £2. We conclude that the
optimal weight W, which yields the best limiting accuracy,
is

. -1/2

W, = R; (29)
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The (minimum) covariance matrix H, corresponding to the
above choice, is found to be

H, = %v—{Re [¥ o (I"R;'T)T]) ! (30)

Optimal IV-SSF Criteria: The criterion (21) can be ex-
pressed in a functional form that depends on the indeter-
minate @ in an explicit way (recall that, for most cases, the
dependence of B on @ is not available in explicit form). Be-
cause of the arbitrariness in the choice of W g, there exists
an infinite class of optimal IV-SSF criteria. In what follows,
we consider two members of this class.
First, let
- A 1/2

Wr=R, (31)
Insertion of (31), along with (29), into (21) yields after some
manipulations the following criterion function

Fww(8) = tr (n;v_l,ﬁASif’S’) (32)

where § and A are made from the principal singular right
vectors and singular values of the matrix

R=R""R, R (33)
(with R,, defined in an obvious way). The function (36)
is the UNCLE (spatial IV-SSF) criterion of Wong and Wu
2].

Next, choose W as
Wr=1I (34)

The corresponding criterion function is
o —1/22 222 5—1/2
frso(8) = tr (n;_l,zARy 25825 Ry ) (35)
v

where § and A are made from the principal singular pairs
of
R=R""R., (36)
The function (35) above is recognized as the optimal (tem-
poral) IV-SSF criterion of Viberg, Stoica and Ottersten [3].
An important consequence of the previous discussion is
that the DOA éstimation methods of [2] and [3], respec-
tively, which were derived in seemingly unrelated contexts
and by means of somewhat different approaches, are in fact
asymptotically equivalent when used under the same con-
ditions. These two methods also have very similar compu-
tational burdens as is readily seen.

5. CONCLUDING REMARKS

The main points made by the present paper can be sum-
marized as follows.

i) The spatial and temporal IV-SSF approaches can be
treated in a unified manner under general conditions.

ii) The optimization of the DOA parameter estimation ac-
curacy, for fixed weights W and Wg, can be most con-
veniently carried out using the ABC theory. (The result-
ing derivations are more concise than those based on other
analysis techniques).

iii) The right-hand (or post-)weight W g has no effect on
the asymptotics.
iv) An important corollary of the result in (iii) above is that
the optimal IV-SSF methods of {2] and, respectively, [3] are
asymptotically equivalent when used on the same data.
Let us reiterate the facts that the IV-SSF approaches
can deal with coherent signals, handle noise fields with gen-
eral (unknown) spatial correlations, and, in their spatial
versions, can make use of outputs from completely uncal-
ibrated sensors. They are also comparatively simple from
a computational standpoint, since no noise modelling is re-
quired. Additionally, the optimal IV-SSF methods provide

- highly accurate DOA estimates. More exactly, in spatial IV

scenarios these DOA estimation methods can be shown to
be asymptotically statistically efficient under weak condi-
tions {5]. In temporal scenarios, they are no longer exactly
statistically efficient but their accuracy is still quite close
to the best possible one [3]. All these features and prop-
erties should make the optimal IV-SSF approach appealing
for practical array signal processing problems.
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