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ABSTRACT
Conventional antenna array processing techniques are
based on the use of second order statistics but rest on
restrictive assumptions. Thus, when a priori information
about the propagation or the geometry of the array are
hardly available, the model can be generalized to a blind
sources separation model. It supposes the statistical
independence of the sources and their non-gaussianity. We
focus in this paper on the generalization of the sources
separation problem to convolutive mixtures of wide-band
sources in the frequency domain.

1. INTRODUCTION

Usual array processing techniques are based on the second-
order statistics of the received signals and use a priori
information about signal propagation from sources to
sensors (hypothesis of plane waves, linear array, ...).Several
methods have been recently proposed [1] [2] [3] [4] when no
a priori information is available. The problem, generally
called “blind source separation”, consists in identifying p
independent and non-gaussian sources from M observed
linear mixtures of these sources. Existing methods [1] [2]
[3] [4] have been developed in time domain in the case of
linear instantaneous mixtures, using higher-order statistics
(usually fourth-order moments or cumulants, or non linear
functions of the observations). In a general blind source
separation problem, the observed data vector (t) may be
represented in frequency-domain by an instantaneous
complex mixture for each frequency bin f, which leads to
the following model: -
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where RNK(f) is the N-point Discrete Fourier Transform
(DFT) of the kth data block of the observation r(t). S(f)
represents the p sources, A is a matrix (M.p) which
characterizes the linear propagation from sources to sensors
and Bk(f) represents an additive M-dimensional gaussian
noise. The problem consists first in identifying the matrix
A(f). Several methods based on the cross-bispectra or the
trispectra of the estimated sources have been proposed
(51 [6] [7]. [8] and [9] propose an adaptive approach in the
time-domain. In this paper, the identification lays on the
factorization of the matrix A(f) as a product of three

matrices :
@ A(D=V () D(f) P(D)
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The matrices V(f) (a unitarian matrix) and D(f) (a diagonal
matrix) are identified thanks to second order statistic criteria
and P(f) (a unitarian matrix) thanks to fourth order criteria
by cancelling the different intercumulants of the estimated
sources.

2. PRESENTATION OF THE SPECIFIC
PROBLEMS

We focus in this paper on the generalization of the sources
separation problem to convolutive mixtures of wide-band
sources in the frequency domain. However, the latter lays
two main difficulties. The first one directly ensues from the
frequency expression of the signals. As a matter of fact, the
current methods in the field of sources separation rest on the
assumption that the emitted signals are non-gaussian, when
in fact the N-point discrete Fourier transform of signals
generally tends to be gaussian when N tends to infinity
according to the central limit theorem. The second one
which is inherent in the application of the algorithm to
wide-band signals is the reconstruction of the estimated
sources spectra from the signals identified at each frequency
bin. As a matter of fact, the sources associated to the ith
identified signals are not necessarily the same from one
frequency bin to another.

3. GAUSSIANITY AFTER A DISCRETE
FOURIER TRANSFORM

This part of the paper is devoted to the analysis of the
possible convergence to gaussianity of the signals after
DFT, for a finite value of N, which is used in practice. Let
s(t) be the signal in the time domain and let define the N-
point Discrete Fourier Transform of the kth data block of
signal s(t) at the frequency bin f ;
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The central limit theorem is proved [10] under a sufficient
condition of convergence relative to the duration of the
multicorrelations :
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Ck5(uy, ..., uk.1) represents the multicorrelation of s(t) of
order k.
It is clear that white processes whose multicorrelations are
reduced to impulses are asymptotically gaussian in the
frequency-domain. Nevertheless, in the cases where this
condition is not satisfied, the possible convergence towards
gaussianity is not proved. We study the distance to
gaussianity thanks to a specific criterion : the spectral
kurtosis which is defined as a section of the general
trispectrum of the normalized sources.
Let K(SNK(D) be the kurtosis of SNK(f), defined by :
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where Cum represents the cumulants of second and fourth
orders and * the complex conjugate.

3.1 Case of bounded multicorrelations

In this section, the usual case where the multicorrelations
are bounded is considered. The evolution of the kurtosis
(which represents a measurement of the speed convergence
to gaussianity) is theoretically established in function of N
and the duration of the tricorrelation. Considering the
property of circularity specific to signals in the frequency
domain, the expression of the kurtosis in the case of
second order white signal is developed. It leads to :
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where T represents the duration of the tricorelation and 032
the power of s(t). The value of the spectral kurtosis
K(SNK(f)) generally depends on T and f. It is clear from (6)
that its value is close to zero for a fixed value of N and a
little value of T (T<N). However, a large value of T is not
always sufficient to obtain a significant value of K(SNK(f))
as the shape of the tricorrelations is also important. To
illustrate this, let us consider the simulated second order
white signal whose single non zero tricorrelations are the
symmetric ones :

) CZ(O, t,=g®fore<T

with T: the duration of the tricorrelation.
In that case, if we develop the expression (5), the kurtosis
is equal to:

T
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As an example, let us consider the following signal s(t) :
9)  s(O=u(t).u(t-1)....u(t-T+1)
where u(t) is a white normalized process with zero mean.
The single non zero tricorrelations of s(t) are the
symmetric ones C43(0,1,t). In that case, the kurtosis of
s(t), K(s(t)), is equal to :
10 Kis(e) = (Kw)+3) T -3
Considering a particular signal u(t) of kurtosis close to
(-2), itleads to :

(1) K@u@®)=-2+¢
(12 Ks)=a+e)T-34-2
13) g =Eu*-1=aq+e) T -1

If we choose £€>0, then g(i)>0 and IK(SNK(D)I is
increasing in function of T.
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Consequently, for a fixed value of N, it exists a value of T
so that the spectral kurtosis be significant enough (not 0o
close to zero). As a conclusion, it exists wide-band signals
with bounded multicorrelations whose DFT (for a fixed
value of N) is not close to a complex normal variable. For
that type of signals, the DFT of the sources are
independent and an algorithm of blind separation in the
case of instantaneous complex mixture may be used [1] [6]
[11]. The conception of such signals is important in active
radar or sonar applications in order to eliminate internal
noises. Two solutions are available : noise cancelling or
blind separation methods. In the case where it is
impossible to record a right noise-reference, blind
separation methods are usable if the emitted signal can be
separated from internal noises after reception.

3.2 Case of periodic signals

Let s(t) be a periodic signal with a period T. In that case,
the statistical kurtosis (5) has non sense. However, its
estimation K can always be computed by L averages on
s(t). For example, let s(t) be a sinusoid of deterministic
frequency o and phase ¢ :

(15 st = A sinQrot + ¢)

Let us compute the DFT of s(t), SNK(f), for f close to @ :
K4 ] sin(m(@-)N)
(16) SN = 5 exp((f+2rwk+m(N-1)(0-2)
J sin(n((o-I%))

2081



Let us define ;
(17) SNK(f) = (AR2j) exp(Gy(f k) F(f)
The estimation of K is computed by :
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By replacing the expression (16) of SNK(f) in (18), it leads
to :
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As the term A is bounded, the kurtosis tends towards -1
when L is large enough for f close to w. In the case of
periodic signals, they may be decomposed in Fourier series
and K tends towards -1 for the harmonic frequency bins.

As a conclusion, this point theoretically proves the
feasibility of the sources separation for rotating machines
signals.

4. SEPARATION OF WIDE-BAND SOURCES
‘When the spectral kurtosis is close to zero, the information
of independent sources is not usable in the frequency-
domain. We then search a relation between RNK(f) for f
fixed and the p time sources si(t), i=1, .., p. We remark :

anil k0 k1
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which directly ensues from the expression (3) of the DFT.
Consequently, it exists a specific MA filtering of SNX(f)
for each frequency bin f which is relied to a function of the
time sources (s(t) - s(t-N)).

4.1 Case of an instantaneous mixture
Considering now the case of an instantaneous mixture in
the time-domain, the expression of RNK(f) is equal to:

(24) RNK(D) = A(D) SNK(D) + BNK()

Apply the previous MA filtering at frequency bin f.
(25)y(k,H=MARNK(D)= A(D) [s(D) - (-N)] + [b(®) - b(t-N)]
The new vector of the observations, MA(RNK(Y)), is then
an instantaneous complex mixture of non-gaussian sources
[s(t) - s(t-N)]. If N >T, where T is the duration of the
tricorrelation of each source, the kurtosis of the new
sources [s(t) - s(t-N)] is exactly the same as that of the
previous sources [s(t)]. Consequently, any sources
separation method can be applied in the case of an
instantaneous complex mixture [1] [6] [11], which
provides an estimation of the matrix A(f).

4.2 Case of a convolutive mixture

Consider now the case of a convolutive mixture in the
time-domain. As RNX(f) is computed on a finite duration
N, it is not exactly equal to an instantaneous complex
mixture in the frequency-domain. It is corrupted by an
additive residual term which cannot be neglected after the
MA filtering. Suppose that the duration of the convolutive
mixture is lower than L. Then we have :

k N+L-1 k k
QORND= Y Q A@@ SN® +BNO
g=0

where A(g) represents the DFT on N+L-1 points and
SNK(g) represents the DFT of the sources sequences : [sik-
N-L+1), ..., si(k)] at frequency bin g.
Q7 Q(t.g) = 1 exp(2rijg/(N/L)) -1

N+L 1 - exp(-2mj((f/N) - (g/(N+L)))
A solution to the linear system of equations (26) is given
with L (or more) extra constraints. If the processes are
defined in a limited bandwidth, L frequency bins of the
vector A(g)SNK(g) are supposed to be negligible. If not,
the observations are filtered in order to verify this
condition. It leads to a complex instantaneous mixture
which can be treated as previously in $4.1.

5. RECONSTRUCTION OF THE SOURCES
SPECTRA

The crucial pomnt consists in the time sources si(t)
reconstruction (i=1, ..., p). After separation, p independent
components of SNK(f,i) (i=1, ..., p) are identified for each
frequency bin f. As the methods independently treat each
frequency bin, the ith identified signal SNK(f,i) is not
necessarily associated to the same time source si(t), from
one frequency bin to another. In order to re-establish the
continuity of the sources spectra, the procedure developed
aims at recovering the statistic relationship between the
estimated sources from one frequency-bin to another.
Suppose now that SNK(f,i0) and SNK(f+1,jo) are associated
to the same time source s1(t). The previous MA filtering
of SNK(f,i0), (H(SNK(£i0))), and of SNK(f+1,jo),
(H(SNK(f+1,jo))) will be equal to the same quantity
(s1(k+N-1)-s(k-1)). Then a criterion based on the second
order moments allows to associate the N frequency
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components of s1(t) :
g

k k
28) E\H (SN(ED), H (S n(f+1,)) f #0
for (i, j) = (io, jo)

k k )
(29) E\ H ( S\(£,i), H { S\(f+1,j) / =0

for (i, j) # (io, jo)

6. SIMULATION RESULTS

The simulation here after illustrates the results of a
complete implementation of the algorithm in the
frequency-domain, in the case of a convolutive mixture of
two sources. The two processes are a rotating machine
signal and a non-gaussian noise. The filters of the mixture
are MA filters of order 10. We present the spectral density
of the right sources and the reconstructed ones after
separation, using the proposed technique in §4 and 5. The
good correspondence between the spectra reveals a good
quality of separation for each frequency bin and a good
quality of reconstruction of the sources.

7 CONCLUSION

We focus in this paper on the generalization of the sources
separation problem to convolutive mixtures of wide-band
sources in the frequency domain. As the N-point discrete
Fourier transform of signals generally tends to be gaussian
when N tends to infinity according to the central limit
theorem, we replace the independence criterion of the
sources with the independence of a specific MA filtering of
their DFT. The result is then an instantaneous complex
mixture in time-domain and the new sources are proved to
be non-gaussian.
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Figl-2. Spectral densities of the sources
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Fig.3-4. Spectral densities of the estimated sources
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