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ABSTRACT

An analytical framework for the implementation of op-
timal filters in the multiresolution (i.e., subband) do-
main is presented. In particular, we concentrate on
filter bank based on the notions of wavelets and wave-
packets. We show how the notion of sparse estima-
tion can lead to significant reduction in computational
cost, with only a minor degradation in performance.
The combination of a wavelet-based filter bank with a
sparse estimation scheme results in a configuration with
five design parameters: (i) resolution level, (ii) degree
of subband channel overlap, (iii) subband utilization
ratio, (iv) estimation sparsity, and (v) filter order. We
demonstrate the effect of each one of these design pa-
rameters on the over-all cost-performance trade-off.

1. INTRODUCTION

Multiresolution analysis decomposes a single record into
a hierarchy of signals at different scales, i.e., into a
multichannel configuration (Fig. 1). This enables the
application of efficient multiresolution estimation tech-
niques to construct optimal (Wiener) and adaptive fil-
ters that operate recursively from coarse to fine scale.
Such filters use the subband-domain components &;(m)
of a received signal z(n) to construct estimates of ei-
ther the subband-domain components §;(m) of some
desired signal d(n), or of the desired signal itself.

In this paper we present an analytical framework
for the multiresolution implementation of such optimal
filters in the subband domain. The configuration we
propose is motivated by the consideration that &(-),
the estimated subband-domain components of the de-
sired signal d(-), are to be used as an input for further
processing, such as target detection or classification,
which is to be done in the subband domain as well.
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Figure 1: Subband-domain decomposition of a signal

z(-).

Our approach to multiresolution optimal filtering is
based on carrying out the filtering operation in the sub-
band domain, using a selected subset of the subband-
domain signals £;(m). This approach allows to trade-
off performance for computational cost: using a frac-
tion of the number of subband channels we can achieve
estimation errors that are close to the theoretical mini-
mum, and at a fraction of the cost associated with using
the complete set of subband channels. The trade-off
between performance and cost is controlled by several
distinct factors, including;:

e Resolution level — total number of available sub-
band channels.

e Channel overlap — degree of overlap between the
frequency responses of subband channels.

e Utilization ratio — the fraction of available sub-
band channels that are involved in the estimation
scheme.

e Estimation sparsity — the number of neighboring
channels used in forming the estimate 6;(-).

o Filter-order — the number of samples from each of



the subband channels used in estimation of é;(n)
for every time instant n.

The first two factors are determined by the details of
the subband decomposition scheme itself. For instance,
the level of resolution in wavelet- and wavepacket-based
decomposition is determined by the depth of the binary
tree that characterizes the filter bank, while the channel
overlap depends also on the frequency characteristics
of the prototype lowpass filter: lower overlap can be
achieved by higher quality filters, but at the expense of
increased computational cost.

The remaining three factors depend on the details
of the (optimal) estimation scheme used. The utiliza-
tion ratio characterizes the subset of subband channels
that are actually involved in the estimation process: ig-
noring (i.e., not estimating) some of the subband com-
ponents §;(-) results in a reduction in computational
cost, combined with some degradation in overall per-
formance. The notion of estimation sparsity offers a
further refinement of the some cost-performance trade-
off: relying on the relatively low overlap between non-
adjacent subband channels we can significantly reduce
the cost of computing each individual subband esti-
mate §;(-), which suffering only minor increase in the
attendant estimation error. This index may range from
a value of zero, which corresponds to the diagonal es-
timation scheme, through a value of 1 (tridiagonal
scheme), to the full-complexity variant, which uses all
subband channels. Finally, selecting the order of the
estimation filter (including the possibility of channel-
dependent order) is yet another way to control the cost-
performance trade-off. While order selection is the only
degree of freedom available in classical optimal filter-
ing, here it combines with the other four factors to offer
a much broader range of design scenarios.

We compare the cost-performance trade-off of the
various suboptimal schemes. We show that utilization
ratio and estimation sparsity tend to be the dominating
factors in the sense that they allow the most significant
reduction of computational cost for a given level of esti-
mation error (Fig. 2). The (lesser) effect of the remain-
ing three factors is described in Sec. 4. Though some
results on matching wavelet-based filter bank,ie, to spe-
cific signals has already been published [1, 2, 3], pre-
vious research has not addressed the cost-performance
issue in optimal estimation.

2. SUBBAND DOMAIN (SD) FILTERING

Our first step is to establish the equivalence between
input-domain and subband-domain optimal filtering.
The optimal input-domain filter uses the received signal
z(n) to construct an estimate d(n) = T ® z(n) of some
desired signal d(n). The optimal subband-domain filter
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Figure 2: Cost-Performance Trade-Off.

T (z) accomplishes the same task but in terms of the
subband domain representations &(-), é(+) of the signals

2(),d(") (Fig. 3).
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Figure 3: Linear filtering in: (a) input-domain vs. (b)
subband-domain

The subband-domain filter is considered equivalent
to a given input-domain filter T'(z) when both config-
urations in Fig. 3 have the same input-output relation.
A necessary and sufficient condition for equivalence is

T(z4) = H(2) DLAT(2)} H'(2) (1a)

where H(z) is the so-called alias component matrix [4]
associated with the filter bank, viz.,

’H(z):[H(z) H(w,z) H(w’z) H(wE2)|
(1b)
T

HL_I(Z)] (1c)

and where D {T(z)} is the diagonal matrix.

H(z) = [Ho(z) Hi(z) Ha(2)

Di{T(2)} = diag{T(2),T(w,2),..., T(wf—lz)}
(1d)
The fundamental equivalence mapping also implies that

Seelz) = TR DL IHLE)  (22)

Sie() = %H(ZI/L)DL{sdx(z”L)}ﬂ‘(zlh) (2b)
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This leads to the conclusion that the optimal (non-

causal) input-domain Wiener filter Topt (2) = S4z(2)S7, (2)

(see, e.g. [5] maps via (1) into the optimal (non-causal)
subband-domain Wiener filter 7 op:(2) = Sse¢ (Z)SE_EI (2).
Moreover, a similar conclusion also holds for FIR causal
Wiener filters:

The input-domain FIR causal optimal filter of order
Mr maps via (2) to the optimal subband-domain
FIR causal filter of order

_ Mr +2Mpg

where we have assumed that the filter bank H(z) is
paraunitary and FIR of order My.

My

Since most commonly-used wavelet-based decom-
positions involve paraunitary filter bank [4], this result
applies, in particular, to wavelet-based estimation.

The significance of the equivalence between input-
domain and subband-domain is that is allows us to
use the (full-complexity) subband-domain optimal fil-
ter T pi(2) as a reference point for comparison with
other schemes. In the following section, we discuss
the principles of constructing (suboptimal) subband-
domain estimation schemes with significantly reduced
implementation cost.

3. STRUCTURE OF SD FILTERS

The construction of a (suboptimal) subband-domain
estimation scheme involves the selection of five design
parameters, corresponding to the five factors that affect
the cost-performance trade-off discussed in the intro-
duction. In particular, we focus on filter bank associ-
ated with the notion of wavelets and wavepackets. Such
filter bank are constructed using a binary tree configu-
ration which involves a single undetermined prototype
lowpass filter P(z) [4]. Thus, the resolution level of
such filter bank is determined only by the depth of
the binary tree, while the degree of channel overlap de-
pends only on the response of the prototype filter P(z).

Since the degree of channel overlap play a central
role in determining the performance degradation as-
sociated with sparse estimation schemes, one should
atternpt to reduce overlap within the cost constraints
imposed on the design. For instance, we have shown
that a wavelet-packet configuration is preferable to a
wavelet configuration in the sense that it results in an
improved cost-performance trade-off when used in con-
junction with sparse estimation schemes.

We use a block-processing scheme, so that subband-
domain processing is carried out at the block-rate which,
in our example is %= of the input signal rate. As a con-

128
sequence the total number of samples per channel (per

one block of output data) is §N; where r is the number of
layers of our wavelet-based filter bank (depth of binary
tree), and N is the length of the input data block (see
Fig. 4). The use of a block-processing scheme intro-
duces another reduction in the overall implementation
cost, since the number of computations per one sample
of the input data is thereby reduced by a factor of N.
We use two sparse estimation schemes:

e Diagonal estimation, in which the estimate of &;(-)
is constructed from samples of &;(-) only.

o Tridiagonal estimation, in which the estimate of
6;(-) is constructed from samples of &(-), &—1(+)
and &i41().

Together with non-sparse estimation (which uses all
available channels) this gives rise to three choices of
estimation sparsity, which we call ”full”, ”tridiagonal”,
and ”diagonal” (as in Fig. 2). Also, we demonstrate
the effect of the utilization ratio by processing only
the subset of all available channels corresponding to
1< i< L, where L can vary in the range 1 < L < 2.
As for the filter order, we consider only two cases: (i)
full, which uses all %V; samples available from a single
channel, and (ii) memoryless, which uses only a single
sample.
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Figure 4: Structure of Subband-Domain Processing.

4. COST-PERFORMANCE TRADE-OFF

We now turn to evaluate the estimation error as a func-
tion of the various design parameters for an example
involving the estimation of a signal d(n) from a noise-
corrupted version z(n) = d(n) + w(n). We scale the
estimation error by the (square root of) the power of
the desired signal d(n), so that the resulting relative
error can be compared across examples.

The effect of the utilization ratio n alone is shown
in Fig. 5, which involves three different levels of the
signal-to-noise ratio (SNR) in the received signal z(n).
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Figure 5: Effect of utilization ratio (n)

The error reduces with increasing 7, the effect being

morpRrqueriese: o8 Wb SNB& into our estimation
schemes results in very minor degradation in perfor-
mance (except when 7 is close to unity). However,
since sparse estimation requires fewer computations,
the cost-performance trade-off curves (Fig. 2) show a
dramatic advantage for sparse schemes: one can achieve
a reduction of up to an order of magnitude (i.e., a fac-
tor of 10) in computational cost for a given level of
estimation error.

The effect of filter order is similar to that of esti-
mation sparsity. Again, using less samples results in
an improved cost-performance trade-off (Fig. 6), with
up to 2 order of magnitude reduction in computational
cost.
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Figure 6: Effect of filter order
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Finally, the effects of filter bank selection are shown
in Fig. 7. While our example shows a definite prefer-
ence for simpler filter banks, fewer layers and lower-
order filter prototypes, more research is required in or-
der to determine the best choice of a filter bank for a
given estimation problem.
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Figure 7: Effect of wavelet coefficients selection
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