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ABSTRACT

The application of sensor array processing methods
for estimation and localization of wavefield sources is
well known. In this paper we extend the sensor ar-
ray processing approach to estimating the parameters
of the fields of a nonwave nature (the so-called non-
wave fields). Considering the static and diffusion fields
as typical examples of nonwave field, we derive the
Cramer-Rao bounds of source parameter estimation er-
rors. These theoretical results are completed by the
experimental results of localization of diffusion sources
in distilled water by a chemical sensor array, showing
potentially high performance of sensor array approach.
A modified version of the well-known CLEAN deconvo-
lution algorithm has been used for experimental data
processing. The nonwave field sensor array processing
can find various applications such as localization of pol-
lution sources and another types of admixtures, dete-
ction of metallic masses and wandering currents, etc.

1. INTRODUCTION

The use of sensor array processing for the estimation
of the parameters of wavefields is known to give excel-
lent results, and it was studied in detail through last
decades [1], [2], [3]. In fact, the typical assumption
for wavefield signal processing techniques is the assum-
ption that the signal model can be represenited as a
set of point sources, and that the array is well calibra-
ted. The presence of model errors essentially reduces
the sensor array processing performance and requires
to involve some additive calibration technique in the
processing scheme [3].

In this paper we apply the sensor array processing
approach to the case of the so-called nonwave fields
(i.e., the fields of nonwave nature). The nonwave fields
are well known to differ from the wavefields by the ab-
sence of spatial periodicity, i.e., wavelength. An exten-
sion of sensor array processing approach to the non-
wave field case seems to be promising [4], [5] due to the

This work was supported by International Science Founda-
tion under grant R8300, by INTAS under SASPARC project
and by Alexander von Humboldt Foundation under Research
Fellowship.

0-7803-2431-5/95 $4.00 © 1995 |EEE

Alez B. Gershman

EPFL, Lausanne, Switzerland
(on leave from Institute of Applied Physics,
Nizhny Novgorod, Russia)

fact that sensor array processing methods can be suc-
cessfully employed in the case of exact characterization
of the array response. Fortunately, in large number of
situations where the nonwave field is measured by a
sensor array, a priori knowledge of the spatio-temporal
array response (the so-called array manifold) is ava-
ilable. Hence, sensor array processing approach can
be applied to nonwave field case. However, such an
extension often is nontrivial because of the specific fe-
atures of the considered nonwave field. The proposed
sensor array processing approach to the localization of
nonwave sources is also cardinally different as compa-
red with the approach which is often used for solving
the inverse problems. Actually, the inverse approach
provides a smoothed solution which is not applicable
to the problem of separation of the point and closely
spaced sources. On the contrary, the sensor array ap-
proach exploits the point source model and, therefore,
it is applicable to the specific problem of localization
and estimation the closely spaced sources.

Considering the static and diffusion fields as typi-
cal examples of nonwave fields, and assuming that the
measurements are carried out by an antenna array, we
derive in this paper the Cramer-Rao bounds of source
parameter estimation errors. These theoretical results
are completed by the experimental results of localiza-
tion of diffusion sources in distilled water by chemi-
cal sensor array, showing potentially high performance
of the sensor array processing approach. A modified
version of the well-known CLEAN deconvolution algo-
rithm has been used for experimental data processing.

In fact, we suggest a new type of a sensor array
(chemical array) for spatial signal processing. In par-
ticular, such a type of sensor array can be successfully
employed for the localization of pollution sources as
well as other types of admixtures.

2. SPATIAL MODEL OF NONWAVE FIELD

Consider an uniform linear array (ULA) of m sensors,
measuring nonwave field from ¢ point sources, where
g < m. Without loss of generality, let us assume that
the sources are localized at the (z,y) plane, and let the
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[-th source has the coordinates (z,y). Let us assume
as well that the sensors are localized at the z axis and
the coordinate of n-th sensor is (Z,,0) (the “tilde” sign
means below that coordinate corresponds to the point
of receiver) where

m+1

5':,.=d<n— ) n=12,...m (1)

and d is the spacing between neighboring sensors.
The sensor outputs can be generally modeled as:

L Ty — 21
r,,=stg p +6, n=12,...,m (2)

=1

where s; is the nonrandom amplitude of [-th source,
9(€) is a function, describing the nth sensor response
corresponding to the lth source, p; is the characte-
ristic scale of source field slump with the distance, ¢,
is the random measurement noise. For example, for
electrostatic or gravitation field, the potential can be
represented as

9O =Q+&N2 p=y (3)

For the diffusion field, raised by single carrying of a
portion of substance in a thin layer of liquid, we have

9(8) = exp(—¢€?%),

where D? is the diffusion coefficient, #; is the time pas-
sed since the appearance of the source in the liquid at
point (z7, y1).

Let us assume that the random noise ¢, is statisti-
cally independent and Gaussian with zero mean and
variance o2. Such a model of noise can be caused,
for example, by random measurement errors in sensors.

Rewriting (2) in a vector notation, we have

= 4D2t1 (4)

r=Gs+e (5)
where
r=(r1,r2,...,rm)T (6)
is the m x 1 vector of array outputs,
8=(s1,82,...,84)7 (7
is the ¢ x 1 vector of the amplitudes of the sources,
Gz(glrgm'-'rgq) (8)

is the m x ¢ matrix of the m x 1 array propagation
vectors:

(52 n(252). o (252
] P 3 P ey ol

(9)

fori=1,2,...,q,
e=(e1,€2,---,m)T (10)

and T denotes transpose. Note, that in this Section
we consider for simplicity the single snapshot case; the
extension for the spatio-temporal case will be made be-
low. Therefore, under (5), the array output vector has
the real multivariate Gaussian distribution with non-

Zero mean:
r ~ RN(1,Gs,o’I) (11)

where I is the m x m identity matrix.

3. CRB OF NONWAVE SOURCE
PARAMETER ESTIMATION

A useful tool for evaluating the potential accuracy of
parameter estimation is the CRB, showing the lower
bound of parameter estimation errors. It is well known
that for any unbiased estimate of vector parameter 8 =
(61,02,...,0k)T (K is the total number of unknowns),
the CRB is given by the diagonal elements of inverted
Fisher information matrix J~1, i.e.,

CRB(6;) = [T~ (12)

For multivariate real Gaussian vector r ~ RN(1, u, R)
the (i, )th element of Fisher information matrix can be
written as

_ _10R___,0R ouT __,0p
Jij —Tr<R 60,-R 60,-) +Re(60,- R 69,-)

(13)
Consider the general case of nonwave field described
by array output model (2), (5) and assume that the
single source is localized at the point (z1,31) of (z,y)
plane. The vector of unknown parameters (02 exclu-
ded, because assumed to be known a priori) is 8 =
(s1,p1,21)T. Using (13), it is easy to show that the
diagonal elements of the 3 x 3 inverted Fisher informa-
tion matrix

[T = (,%C“) { ?:%f)pg s ;,3 (149

where C is the matrix, defined via the inverted one
s=c™L

[C™')ij = Sij = (d/p1) i Yi(€n — P)¥i(€n — B),

n=1
(15)
for 1,5 = 1,2,3. Matrix (15) is different for each type
of field. Here the following parameters must be intro-
duced

B==zi/p,
Y2(€) = ~€9'(€),  ¥3(§) = —g'(€)

&n = in//’ly
¥1(8) = 9(¢),
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Let now derive the form of the matrix C for dif-
ferent types of received signal model, namely, for the
static field (3) and the diffusion field (4). Let us assume
for simplicity that the distance d is much less than the
characteristic scale p;. This assumption means that
the sum in (15) can be replaced by a corresponding
integral with the limits [—a,a], where @ = md/2p;.
Fortunately, the assumption d < p; can be easily sa-
tisfied in practice because it can be taken into account
when choosing the construction of the receiving array.
Thus, we find that

a-f
| wowe (16)
~a—p

Sij =

3.1 Static Field Case

For static field case the CRB’s can be derived stra-
ightforwardly using (16) and (3). The final expressions
are complicated and the reader can find them in [5].

In order to get more simple relations for CRB’s let
us assume that md > p1, 1.e., @ > 1. The comparison
of this condition with d < pj shows that these two
inequalities can be satisfied both when the number of
sensors is large m > 1. The assumption a > 1 enables
to take the infinite limits in the integral in the right
part of (16). In this case, we have

C==-(-4 8 0 (17)
T\0 0 8

The structure of matrix (17) implies that the asym-
ptotic CRB’s of 8; and p, are independent of whether
the parameter z; is known or unknown, and vice versa.
Equation (17) also shows that the asymptotic CRB’s
of p; and %, coincide exactly.

Substitution of (17) into (14) yields

3d
CRB(5;) = = —o? 18
(81) i (18a)
d
CRB(j;) = CRB(%;) = ?r- % o (18b)
1

where we must recall that in accordance with (3) the
parameters p; and y; are the same.

3.2. Diffusion Field Case

Making the same assumption as in the last subsection
(md > p1), i.e., considering the asymptotic case of
large number of sensors, we have

/3% -10
c=+/%[1 2 o (19)
T™\o 0 1

The structure of matrix (19) implies that the asympto-
tic CRB’s of 5; and j; are independent of whether the
parameter z; is known or unknown. By the substitu-
tion of (19) into (14) we can write the CRB’s as follows:

CRB(3,) = :/—é_; ’;il o? (200)
CRB(j) = 21/ > d“ o2 (208)
CRB(2,) = 1/ 2 dsf’l (200)

1

4. SPATIO-TEMPORAL EXTENSIONS

The important feature of nonwave fields is that the
various types of them essentially differs by the temporal
dependence. The most simple temporal dependence is
inherent in the static field which array output vector
can be modeled as

r(t) = Gs+e(t), r~RN(M,Gs,¢’I) (21)
Hence, the CRB for static field can be trivially reformu-
lated for the multisample case by taking into account
the number of samples M in final expressions. Further-
more, the model (21) enables to apply the deterministic
(conditional) maximum likelihood (ML) technique.

The extension on the spatio-temporal case for the
diffusion field sources is more complicated due to the
nonstationary character of temporal dependence. For
two-dimensional diffusion (for example, when the sub-
stance is dissolved in the thin layer of liquid), the nth
sensor output can be modeled as:

mM—Z/Mﬂ

=17

e ,n/(t_
S drte(t) (22

where Tip, = (47 + (3n — :r:;)z)/4D2 t; is the time of
appearance of the Ith source in a liquid, ni(t) is the
temporal dependence for the Ith source (n; = 0 fort <
t;), while €,(t), D?, &n, and (21, y1) are the introduced
above sensor noise, diffusion coefficient, coordinate of
nth sensor, and lth source coordinates, respectively.
We limit our consideration below by two typical models
of the function n(t):

n;(t) = m&(t - tz) (230)
n;(t) = Nj, it>1 (23b)

corresponding to the so-called “ideal drop” and “ideal
crystal” sources, respectively.
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For the model (23a) after conversion to a vector
notation we have such type of temporal behavior:

r(t) = G(t)s(t) + e(t) (24a)
In turn, for the model (23b)
r(t) = G(t)s + e(t) (24d)

Hence, in the diffusion field case the array output ve-
ctors can be modeled as the real multivariate Gaussian
vectors with the mean, depending on time. In special
cases, where either temporal only (a single sensor) or
spatial only (a single snapshot) measurements are ava-
ilable, the ambiguities exist, which do not allow one to
estimate the full number of parameters. These ambi-
guities are considered in [5].

5. EXPERIMENTAL RESULTS
5.1. Description of Experiment

The experiments with the diffusion sources and the che-
mical sensor array were carried out as follows. We pla-
ced the ULA of 12 sensors in the bath with the thin
layer of distilled water. Each sensor of the array was
used for the measurement of the conductivity and was
constructed as a pair of closely spaced electrodes. In
the fixed moments the crystals of KMnO4 or NaCl
were placed in the water and results were recorded in
digital form.

5.2 Algorithm of experimental data processing

Below we describe the modification of well known CLE-
AN algorithm, which is adopted here for diffusion field
processing. The modification of the algorithm inclu-
des least-squares additive estimation of unknown para-
meters of the array response function at each step of
the algorithm. The output of the nth sensor can be
represented as noisy convolution of the unknown spa-
tial distribution P(z) of the sources and of the known
(within a width p) Gaussian function g:

r,,:/P(:c)g (2";I> de+¢,, n=12,....,m

(25)
where €, is the area of observation along the z axis.

The i+ 1th step of the effective deconvolution algo-
rithm includes the following substeps:

1).Determine the number of sensor corresponding
the maximum of R;(Z,). Denote the coordinate of ma-
ximum as Zmaz,i-

2).Calculate the least-square estimates pi, Tymaz,i
and R;(a":pma,_;) of the width p, of the precised co-
ordinate of maximum, and of the value of function
Ri(Zpmaz,i) corresponding to coordinate Zpmaz,i, respe-
ctively. Employ here a priori knowledge of the Gaus-
sian form of function g.

3).Carry out the iteration

Rt'-}-l(in) = R«(in) - wRi(ipmax,i)g (i%ﬂ)
3
(26)
where w is a weight constant (w =2 0.1).

4). Compare the global maximum of function
Ri;1(%,) with the threshold II, which is determined
before processing using @ priori information about the
noise variance. If max R;41(Z,) > II, go to the next
(i + 2th) step of algorithm. If vice versa, then stop.

The initialization of the algorithm 1).-4). includes
the choosing of a weight constant w and: Ro(£,) = ra.

The reconstructed distribution of sources (the so-
called “cleaned” image) after final step of the algorithm
1).-4). is constructed as

M,-1

F(#) = Y wRi(Zpmaz,i)6(% — Zpmazi)  (27)

i=0
where M, is a total number of iterations.

5.3 Results of Data Processing

The use of modified CLEAN algorithm for diffusion
data processing allows to essentially improve the per-
formance of source localization. The estimation errors
of reconstructed images are less than that without pro-
cessing (see [5] for details).

Moreover, the modified CLEAN algorithm performs
well enough in the situations, when nothing can be
said about the number and the coordinates of sources.
The results of source reconstruction allow to detect the
number of sources as well.
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