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ABSTRACT

We investigate the application of EM algorithm to the
classical problem of multiple target tracking (MTT) for a known
number of targets. Conventional algorithms, have a
computational complexity that depends exponentially on the
targets' number, and usually divide the problem into a
localization stage and a tracking stage. The new algorithms
achieve a linear dependency, and integrate those two stages.
Three major optimization criteria are proposed, using
deterministic and stochastic dynamic models for the targets.

1. INTRODUCTION
The problem of tracking superimposed signals, embedded in

noise, is important in sonar, radar, spectral estimation, and other
fields. The observed data y,(t),y,(f), ..., ¥, (), ..., can be a

non-linear noisy function of the tracks parameters
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where each y, () is a vector of M signals that is composed of N

superimposed signals s{”(2,6{"), and n, (¢) is the observation

noise. k is the snapshot index. In a sonar problem, for example,
the data vector y,(¢) is generated by an array of M sensors,
sampled in time. This data is a function of the parameters, which
can be the locations and velocities of the N targets, for each
sample time.

The parameters 6 themselves, can be modeled as a
stochastic process, or as a deterministic vector. Any brute force
attempt to write an algorithm that will produce an exact MSE,
MAP or Maximum Likelihood criterion optimization for the
estimation of these parameters, is unfeasible, and the produced
algorithm will have computational complexity that is exponential
with respect to the number of the snapshots and the targets.
Consequently, the algorithms that are traditionally used for
multiple target tracking (MTT), are not optimal. The problem is
usually considered in two separate stages: Localization, in which
the new parameters 6!” are estimated from the recent snapshot
Y. (t), and tracking, that makes use of some estimations from
the localization part to produce the final track. Even the
estimation in the localization part is usually not optimal (in a
minimum estimation error sense), because optimality requires a

computational complexity that depends exponentially on the
number of the targets.

In this paper, we investigate the use of the EM algonithm to
this classical problem of MTT with a known number of targets.
The algorithms that are used, integrates the localization stage
with the tracking stage,-and achieve a linear computational
complexity with respect to the targets number.

2. THE EM ALGORITHM

The EM algorithm iterates between a "complete data”
estimation (E-step), and the parameters estimation (M-step). In
our case, the complete data can be obtained by decomposing the
observed data y, () into its signal components (see [3]),

x() = s (1,60") +mM (1) @

with constraints on the noise decomposition, to obtain
N
=Y x"(W=Hx,(1), H=[11..]] 3)
n=l

We utilize those previous results to develop the algorithms in the
sequel. Three major approaches are proposed.

3. MAXIMUM LIKELIHOOD ESTIMATION

The first approach, uses a deterministic model for the
parameters. A "forgetting” mechanism is used, to allow changes
over time. Suppose y,(?), y,(f), ..., ¥, (t), ... are independent
ergodic snapshots (the "incomplete" data), each with a
probability density f, (»,.8,). The parameters 8, are unknown
vectors that vary according to )

0, =F0,, “)

where F is a constant transition matrix. According to this model,
estimating the last parameter 6., will automatically drive the
estimation of all the preceding parameters. Consequently, the
parameters estimation can be accomplished by a multi-parameter
maximum likelihood search on 0 .

Using the computationally efficient recursive EM
algorithm, the search over the targets is avoided. Let
X,,X,,...X, ... Tepresent an independent "complete” data, that is
related to the observations by (3). The batch EM algorithm starts
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with an arbitrary initial guess 8, and after / iterations estimates

6, by 8% Each iteration cycle is can be described by two steps:

E: Evaluate
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where E s {'} denotes a statistical expectation with respect to the

last parameter estimation. In each iteration all the data has to be
processed.

In {2] Titterington has suggested a sequental algorithm for the
case where the parameters are constant. Based on this approach,
in our case (of time varying parameters) we obtain the following
sequential algorithm:

E:00,,.0,)=1,,0,,)= )
k+1
=27 E, (logf (. FT6,)/ 3}
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M: Maxem Q(e‘,l’ék) - ékol (6)

where each of the statistical expectations of the log-likelihood is
done once, and used for the next expectation. The constant y was
suggested in [1]. For varying parameters, ¥ is expected to be a
tradeoff between good tracking ability (y small) and noise
insensitivity (y = 1).

It can be proven, that by applying a Newton second order
approximation, we- obtain a new, fast stochastic algorithm, that
benefits from the given model:

The Recursive EM-Newton algorithm:
0, = Fék +Icg, S(yk.l'l'ﬁk) )

I, =yF' I, F* +1c(F9,) (8)

where S(y,.0,) denotes the score vector, and Ic(8, ) is Fisher

information matrix corresponding to a single complete snapshot,
that is

S(ygveg)?_vﬁ lOg f,()’.;e.)
Ic(ek) =_E¢k{ V:A log fx(x};eg) }

Notice, that for F=Identity (constant parameters), and for
¥ =1 (no forgetting factor), this algorithm becomes

-1

élol = él +[ilc(él )] s(ylﬂ 'ék )

=1

and for a small change of Ic(é,.) near the ML estimation 6 , we
obtain, approximately,

~ ~ ~ ~-1 ~
6,.,=6, +[kIc(9,)] S(9,,:9,))

which is a stochastic approximation algorithm, suggested by
Titterington [2] for constant parameters. The conventional
approach to handle time varying parameters (see {9]), is to
substitute the converging series (1/k) with a small positive
constant vy, in the algorithm obtained for constant parameters,

that is,
81 = 8, +1,[1668)] 500 61 ®)

This ad hoc procedure can now be replaced by the new EM-
Newton algorithm, in order to utilize a dynamic model for the
parameters

4. MSE ESTIMATION

The second approach, uses a Bayesian model, with a MSE
estimation criterion. A natural approach to the problem of
tracking superimposed signals is to model the track parameters as
a stochastic process. A reasonable choice would be

0" =Fo” +q, (10)

where ¢, is the driving noise of the parameters process, and 92"’
is the parameters describing the n-th signal the k-th snapshot.

The estimation that minimizes the MSE is
6=£{oly,..»,} )

This estimation can be accomplish by the Kalman filter, if
s (1,0"”) in (1) is linear. Unfortunately, this is usually not the
case, and a complete integration of the localization and the
tracking is not possible. Using the EM algorithm for localization
and a Kalman filter for tracking, with feedback to the
localization, produces a fast high resolution algorithm:

7 The EM-Kalman algorithm

1. Initial states:

forn=12, ..., N (signals):
Guess state #0, 9:’
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Set initial error variance, Pm
Fork=1.2,...

2. Localization:

forp=1.2, ..., N p (iterations number):
forn=1.2,..,N (signals):

E-step:
£ =5 1.65.) +l3.[y. -5 (t.éit.’-.)} :(12)
im]
where ZB" =1
M-step:

é:n) =H. argmin.(:, J'r[ i:n) - s:.., (’-91"’ 3 R
(£ () -5 (1.6)] (13)

3. Kalman tracking:

forn=12, . .,N (signals):
K" =P H'[HPY H +Ra,]

kk-t k/k-1

AR _ Am (M) (50 NG

6, = eut-; -K,°[8," - Hej/k—ll
” ”

P, =[I—KkH]Pk/k-l

A ) A

o =F0,

k+1/k
P =FP"F 10

2511

5. MAP ESTIMATION

The third approach, uses the a Bayesian model, with a MAP
estimation criterion. The parameters are modeled as the discrete
stochastic process (10). An exact solution can be achieved using
the Hidden Markov Model (HMM), (see [6], [7] for frequency
line tracking). However, the HMM algorithm does not reduce the
exponential dependence of the computational complexity on the
targets’ number, and in a typical sonar problem, for example,
tracking even two targets may be unfeasible. Integrating the EM
algorithm with the HMM, eliminates this problem, and a fast,
powerful algorithm, that converges to the optimal solution, is
produced.

At the localization stage, some of the parameters are
estimated from the last snapshot by the EM algorithm. Denote

these estimations as é;"’ , which estimates the vector H6_". The

initial state for the EM iterations was predicted by the tracking
stage. This prediction is based on the previous estimations, and
therefore, is close to the actual parameter. Thus, a few EM
iterations may be sufficient

Since the complete data x, (¢) and the incomplete data y, (1)

are jointly Gaussian, related by a linear transformation (5), the
estimation (12), and the log likelihood (13) can be calculated in
a straight forward manner (see {3]).

At the tracking stage, the EM estimations are considered as a
noisy observations of the real parameters

6 = HO" + rta, (14)

The driving noise and the EM-estimation noise are modeled as

Gaussian, with covariance matrices @, =E{q,q;} and

R, = L‘{n.,.,na, } Kalman filter is used to track 8%

The batch EM-HMM algorithm:
1. Initial track guess

forn=12, ..., N (signals):

guess track #0, é:"; (1<k<K)

forp=12,..,Np :
2. Recursion:

for k=12, ... K (snapshots):

forn=1,2, ..., N (signals):
E-step:

A (n) ad ) A
%, =5 (r.e;;_,)w.[y. -3 ’(z,e;_;_l)J
=1
where >°B, =1 (1£k<K)

M-step:

forj=12,..,Ns (new state)

n b (x (1))

8" ()= . ]
' max sy, [8:-)1 (Sl)a,j]bj(x:,:(t))

vy (S,) =argmax, [5:".), (S,)ﬂy] 2<k<K)
3. Termination:

forn=12, .., N (signals):

iy, =srgmax,__, [57 ], 62 =5 P Qsk<K)

4. Backtracking

for k = K-1,K-2, ...,1 (snapshots)
forn=12,.., N (signals):

(m) ™ .00 Ay
Lo = Via (’m,p) ’ 91.; = S,:-»

The heart of this HMM algorithm is the Viterby algc;rithm, in
which the new state probability distribution for states j=1...Ns, at

time k (6:"’ (/)), is calculated from the one saved for time k-1,
and from the new complete data x,” () [5] .
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A={a,} is the state transition matrix for one signal from
o) ™
state 6, = §, tostate 6, =SJ , where

plev =56 =5,

a,

e[ eq X3l -FS,1"Q"ls,~FS 1} s,
The initial state distribution vector is II={m,}, where
7, =P{e;"’ =s,}. B={b,(x,” (1))}, where b (x{” (1)) is the
continuous probability distribution of x™(z) given state

k
6, =S, , thatis

b, (x," (1))= (15)
=Sy (X0 167 =S5,)

=c exp{— L[x:") (0)-s” @WSHI" R (1) -5, (1.8, )]}

The probability measures A, B, IT and the states number N,
define an HMM that produces the MAP estimation for the n-th
signal, given the complete data as observations,

6" = max.,,_,{ FO°1x". %)} (16)

Ao
and thus constitutes an M-step in the EM algorithm, that takes
all the snapshots into account.

6. SIMULATION

Simulations were performed for the case of a sonar with
linear array of omnidirectional sensors. The algorithms achieve a
high resolution in range and azimuth, in low SNR, and random
phase. The EM-Kalman algorithm was implemented for the FTV
3-dimensional sonar [4], and tested with real data.

Fig. 1 shows the first snapshot of two Hanning signals
embedded in noise. The signals' time delay represents the targets'
ranges.

i

250 300

[
Time

Figure 1: The first snapshot. the original signal (--), and the
noisy signal (-)

In the following snapshots the ranges change, and targets
maneuver in sinus-like tracks. Fig. 2 shows the time delay
estimations of the conventional stochastic approximation
algorithm (9). Fig. 3 shows the EM-Newton algorithm (7)«(8)

estimates, using a linear model for the track. Clearly, for this
case there is an advantage of using the model-based EM-Newton
algorithm.

Snapshots

Figure 2: The actual track (-) and a conventional
stochastic approximation algorithm estimations (0,s)

20 25 30 B 40 45 50
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Figure 3: The actual track (-) and the EM-Newton algorithm
estimates (0,+)
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