PARALLEL AND STABLE SPHERICAL SUBSPACE TRACKING

Filiep Vanpoucke and Marc Moonen

Katholieke Universiteit Leuven
Dept. of Electrical Engineering, ESAT
K. Mercierlaan 94, 3001 Leuven, Belgium

ABSTRACT

We introduce a factored spherical SVD updating algo-
rithm which can be used for subspace tracking. It is
a non-iterative algorithm for approximate SVD updat-
ing. The orthogonal matrix tracking the signal sub-
space is parameterized as a sequence of Givens rota-
tions. This factorization has two important advan-
tages. On the algorithmic level it cures the error ac-
cumulation problem inherent in the algorithm. The
subspace matrix is now confined to the manifold of or-
thogonal matrices at all time. On the architectural
level the factored algorithm is more amenable to par-
allel - even systolic - implementation. Moreover, the
SFG contains only rotation nodes. Therefore, an ideal
processor for a real-time parallel ASIC architecture is
a CORDIC processor.

1. SPHERICAL SVD UPDATING

Estimating a D-dimensional dominant eigenspace of an
M x M correlation matrix is a key component in high
resolution direction finding algorithms such as MUSIC,
ESPRIT and WSF. In this array processing application
M is the size of the sensor array, and D is the num-
ber of narrow-band emitters at the center frequency of
interest. The accuracy of the signal parameter esti-
mates ultimately depends on the accuracy of the signal
eigenspace estimate. In on-line applications one has
to track the dominant subspace of the growing data

matrix
aXpe—1
Xy = [—&,—L] ,

k)

where zj) € CM is the new data vector at sampling
time t; and o < 1 is a scalar exponential weighting
factor. A cheap approximate updating algorithm is the

This work was supported in part by the ESPRIT BRA 6632
project of the EU. Filiep Vanpoucke is a research assistant with
the N.F.W.O. Marc Moonen is a research associate with the
N.F.W.0O. (Belgian National Fund for Scientific Research). e-
mail: {filiep.vanpoucke,marc.moonen}@esat.kuleuven.ac.be

0-7803-2431-5/95 $4.00 © 1995 IEEE

ROSA (Rank-one update, signal averaging) algorithm
(1, 2]. At each time the exact singular value decompo-
sition (SVD) of the data matrix is approximated by

X~ X = | Vi |V |- Do | Vi | %8]H’

where Uy € C*XM and Vi) € CM*M are partitioned
unitary matrices and Dy} € RM*M s a block-identity

matrix
ol lp I 0]
— [k]
Do = [O [ofyim-p]

containing averaged signal and noise singular values

1 D

oy = 32T
=1

M

1
Y o
M-D i=D+1

O =

A subspace for which the corresponding singular val-
ues are averaged is called a spherical subspace. Any
orthogonal basis can be chosen as a basis of singular
vectors. The ROSA algorithm exploits this freedom to
formulate a non-iterative subspace update. As shown
in Algorithm 1, the signal subspace matrix VE;_I] is
updated by a sequence of D Givens rotations <I>E,|:]+1.
Such a Givens rotation matrix Q'LJ is an embedded
complex 2 x 2 rotation matrix, differing from the iden-
tity matrix at four entries QELJ](i, i) = QEL’](J', i) =c
and QMli(i,7) = —QI"(4,4) = s where ¢ + 55 = 1
and ¢ € R,s € C. The rotation angles are computed
by gradually zeroing the projection of the new incom-
ing data vector onto the signal and noise subspace. For
more details on the computation of the rotation matri-
ces we refer to [2]. A reduction in computation and
in storage to O(M D) is achieved by only tracking the
smaller of the two matrices V[;"] or V[L‘] (Here we assume

D<M-D.).

2064

Algorithm 1
s ID
Vi [OM-DxD
ofopofoy < 0

fork=1,.---,00
1. projected signal vector
~oH
I AR (Y
2. projected noise vector
2y~ 20~ V-1 Zi
T < =gyl
Vi o/

3. column rotations

D-1
. ;. i
[o-0]y] ~ ”fkl'Hl‘I’Ek']
=
% 0] I
0 g | < Ow| O 2%y | ¥y
0 0 . k) V)
] = i)i+1
13
[Vialx] = [Vitul o |- T %

=1
4, re-averaging the singular values

oty e \/&f‘:] +(D - l)azdf:-ll
(<] D

ohy — \/&3‘21 +(M =D - la%of”)

M-D

endfor

2. FACTORED ORTHOGONAL MATRICES

The spherical SVD updating algorithm has two ma-
jor disadvantages. First subspace tracking is typically
part of the front-end processing of a real-time system.
If data rates are high, then real-time execution may
require a computing power, which can not be delivered
by a single processor. Parallel computing is then the
natural solution. To obtain a good speed-up, optimal
mappings from algorithm to parallel architecture must
be investigated. Unfortunately, the spherical SVD up-
dating algorithm has a complicated data flow, mainly
due to the second matrix-vector product Vii_; - Zf
and the normalization of #,;. This makes 1t hard to
pipeline the algorithm efficiently.

D{D+1

Secondly, the orthogonal matrix VLZ] € CM*D | cop-
taining the subspace estimate, is continuously updated
by sequences of 2 x 2 rotations. Rounding errors in
these multiplications cause the matrix Vi, to drift
away from orthogonality, eventually leading to numeri-
cal instability. Current stabilization methods are based
on periodic re-orthogonalization, keeping the deviation
from orthogonality bounded. They are costly and fur-
ther destroy the regularity of the data flow, thereby
complicating parallel implementation.

In [3] we studied the same problems for a structurally
related algorithm, i.e., the Jacobi SVD updating algo-
rithm [4]. Both problems were addressed by a minimal
parameterization of the full square matrix of short sin-
gular vectors Vi) € CMxM | 1t is given by the following
factorization lemma.

Let V be a unitary matriz (VE .V = Ip). Then
V can be factored uniquely into a product of M -
(M —1)/2 complez Givens rotations Q' i.e.,

M-1 M
v-11 1] a»

i=1 j=i+l

The proof is constructive and is based on the Givens
method for QR decomposition {5].

Here we propose to use the same factorization for the
rectangular matrix Vi _;) € CMx*D | Since the Givens
method can be applied column-wise to V, it suffices
to truncate the process after column D to obtain a
factorization for its first D columns.

D M »I .
[- 1
vig=1II II e
i=lj=itl
This factorization ensures the orthogonality of the ma-
trix VU: in each iteration. Therefore, numerical error
accumulation is avoided. It remains to be shown how
to formulate all operations involving Vi, in terms of
the rotation angles.
In the spherical SVD updating algorithm, the first
L . o .. ~gH
operation is the matrix-vector multiplication Zf,; =
z{,f] . V[,’¢_1]. In factored form the inner product op-
erations are replaced by Givens rotations

D M
~gH g
g =< I1 TI @py (1

i=1j=i+1

The signal flow graph (SFG) of the factored spher-
ical SVD updating algorithm is shown in Figure 1.
The black dots in the SFG represent delay operators.
The full functionality of all nodes is given in Figure 2.

2065

Eq. (1) is implemented by nodes Al and B1. They per-
form a Givens rotation on their input pair and propa-
gate the output pair to the right and downwards.

The second operation involving Vik is the updating
of Vik-1

D
[Vo |] = [Veton | o | T
=

The Givens rotations QE'L"]H are computed in the bot-

tom nodes (D and E) and then propagated upwards to
be worked into the factorization of Vjx_1). As shown
in {3], the updating can be done directly in terms of
the rotation angles by two types of transformations,
depending on the indices of the interacting rotations
lel and Qi|i+1.

1. If (k,1) and (4,7 + 1) are equal, then the rotation
angles of Q*1*+! and ®*l'+! must be added together
(nodes Al).

i]i+1 = Qi|i+1 . (Di]l'-lrl‘

2. If (k,1) and (i,i+1) share one common index, then
re-ordering of three Givens rotations is necessary
(nodes B1).

<I>i“+1 -Qf." -Qi‘”“ = Qi|l .Q.‘+1|x L Pili+l

The product of the right-hand matrices is com-
puted and re-factored in a different order, bringing
the (3,7 + 1)-transformation in front. The cost of
this operation is 10 Givens rotations.

The last operation involving V[,'c] is computing the

parameterization of zf}; = Vjz_y; V[}:fll -z[k]. In Algo-
rithm 1 this is done by

H
g = (I = Viieyp - Vik-1) - o)

The data flow of this double matrix-vector product
contains a long bidirectional vertical dependency path.
Here a more elegant computation is possible. The
D+1st column (nodes C) of the trapezoidal grid should
compute the parameterization of the vector z[}

Ly after
normalization. If this holds, the last M — D — f com-

ponents of V,’:fl +Z[x] are zero. This can only be true if
the outputs at the right hand side of the rotation nodes
in the D + 1st column are zero. Therefore, it suffices
to operate these nodes of type C in angle accumulation
mode instead of rotation mode, similar to the nodes of
type D and E. An additional advantage is the fact that
normalization is implicit. The output of the D + 1st
column is automatically the required norm H:cf}c]H

Zlk),1

S
$
e~
A

Al

Z(k),2 \
3 243
Ql)l_l Q I!—l
@ 9
B1 Al
Zk),3 \
114 2|4
Q 11—1 Q[’l—l
3[4
ol Qi
B1 B1 C
Z(k],4
1|5 2]5
Q).I;_l Q‘ll—l
3|5
ol Qi
Bl B1 C
Zik),5
1le 2le
Q)!-1 Q[=-1
36
o Qpe—y)
Bl B1 C
Z(k],6 | |
12 203
‘I’[k] q)[k]
& T2 E(k),8

lc
L

i) Ok

Figure 1: Signal flow graph of the factored spherical
subspace algorithm for M = 6,D = 2

3. A LINEAR ARRAY

A natural way to assign computation to processors, is
map all nodes of one column to a single processor. The
corresponding placement vector p is shown in Figure 1.
The linear array then consists of D + 1 processors.
Because of the bidirectional vertical data flow, the
scheduling (i.e., allocation of the computation over
time) can not be done with a single scheduling vector.
For each time iteration the algorithm consists of
three phases. In the first two phases the orthogonal

matrix-vector product Z[x) and the rotations @EL?H are

2066

Q Tin ~
Qout Tout =0T. Zin
3-’11 Yout [Yout] Q [Yin]
Py Qout = Qin]
Zout
Q zZinPout
Qlout Fin Zout T Zin
Qli B1 8’.“‘ [ou]—Q [in]
Yin . Yout Yout Y
Zon D Pout * Qlwc . Q"out = Qlin . Q"in < ®in
outxsn
Zin
Q Zout T Tin
[]-en[
Zout

alol, +2° Ty
3
zy o’ol + ¢
s (D-1)a%e?? 4422
Tout = D
n (M—D—l)a’r{':-ﬁ-a"z
Oout = M—D

Figure 2: Functionalities of the nodes

generated. Here the data flow evolves from top to bot-
tom and from left to right. In order to respect the
ordering imposed by the dependencies, the scheduling
vector s; of Figure 1 is selected. In the third phase the
factorization of V[;] is updated. This updating process
has dependencies pointing upwards and to the right.
Therefore, the second scheduling vector s; points from
the bottom-left corner to the diagonal. The linear array
with this piecewise linear systolic schedule is efficient
since it attains a processor utilization of almost 100 %.
Its pipelining period is 2M — 1 cycles.

4. CONCLUSION

We have presented a factored approach to spheri-
cal subspace tracking. The orthogonal matrix span-
ning the estimated subspace is stored as a sequence
of rotations. A first advantage is that the matrix
is always kept orthogonal. There is no need for re-
orthogonalization and the algorithm is numerically sta-
ble. A second advantage is the ease of parallel imple-
mentation. The data flow is regular and homogeneous.
Moreover, the algorithm consists solely of 2 x 2 rotation
operations. Therefore, the ideal candidate for an ASIC
implementation is a CORDIC processor.

Finally, we have presented a linear array with a sys-
tolic schedule. However, a planar array can also be
derived. Unfortunately, in order to break the long ver-
tical dependency path of length O(2M), alterations to
the algorithm itself are necessary. This method of ’al-
gorithmic transformations’ has been successful in effi-
ciently mapping other algorithms onto systolic arrays
as well, e.g., the recursive inverse least squares algo-
rithm [6].

5. REFERENCES

[1] R. DeGroat, “Noniterative subspace tracking,”
IEEE Trans. on SP, vol. 40, pp. 571-577, Mar.
1992.

(2] R. DeGroat and R. Roberts, “A family of rank-one
subspace updating methods,” in SVD and Signal
Processing: Algorithms, Applications and Archi-
tectures (E. Deprettere, ed.), pp. 277-300, North-
Holland, 1988.

[3] F. Vanpoucke, M. Moonen, and E. Deprettere,
“A numerically stable Jacobi array for parallel
SVD updating,” in Advanced Signal Processing Al-
gorithms, Architectures and Implementations V,
Proc. of SPIE (To appear) (F. Luk, ed.), (San
Diego, USA}, p. 10, July 1994.

[4] M. Moonen, P. Van Dooren, and J. Vandewalle, “A
systolic array for SVD updating,” SIAM J. Matriz
Anal. Appl., vol. 14, pp. 353-371, Apr. 1993.

[5] G. Golub and C. V. Loan, Matriz Computations.
John Hopkins, 2nd ed., 1989.

(6] M. Moonen, L. Proudler, J. McWhirter, and G. Hek-
stra, “On the formal derivation of a systolic ar-
ray for recursive least squares estimation,” in Proc.
ICASSP, vol. 2, pp. 477-480, Apr. 1994.

2067

