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ABSTRACT

In this paper, we address adaptive estimation methods of
eigenspaces of covariance matrices. We are interested in
methods based on several coupled maximizations or
minimizations of Rayleigh ratios where the constraints are
replaced by appropriate parameterizations (Givens and mixed
Givens/Householder). We prove the convergence of these
algorithms with the help of the associated Ordinary
Differential Equation, and we propose an evaluation of the
performances by computing the variances of the estimated
eigenvectors for fixed gain factors. We show that these
variances are very sensitive to the difference between two
consecutive eigenvalues. Moreover, they also depend on
whether the successive analyzed vector signals are correlated
or not, and thus greatly depend on the origin of the covariance
matrices of interest (spatial, temporal, spatio-temporal).
Finally we show that the performances can be improved when
the centro-symmetric property of some of those covariance
matrices is taken into account.

1.INTRODUCTION

For the last ten years, adaptive estimation of covariance
matrices has been applied successfully to both temporal and
spatial domain high-resolution spectral analysis. The interest
for these methods, a tool of outstanding importance in many
fields of Signal Processing, has recently been renewed by the
subspace approach used in blind identification of
multichannel FIR filters [1]. Among the solutions that
propose to recursively update the eigendecomposition of a
covariance matrice, we are interested here in methods derived
from constrained optimizations. These constrained
optimizations can be performed adaptively by a stochastic
gradient search over time where the constraints are taken into
account by a Gram-Schmidt orthogonalization at each
iteration [2]. To get rid of these constraints, an alternate
solution consists in using an appropriate parameterization
[3]. Until now, only simulations attested the convergence of
the stochastic coupled gradient based adaptive algorithms
constructed on these parameters. We essentially propose in
this paper to study the convergence and the performances of
these methods by introducing the necessary methodology and
exploiting some of the results that can be derived from it.

This paper is organized as follows. After introducing some
notations and describing the parameterization of the
orthonormal eigenvectors of the covariance matrices in
Section 2, we prove the convergence of the coupled stochastic
gradient algorithms with the help of the associated Ordinary
Differential Equation in Section 3. An evaluation of the
performances by computing the variances of the estimated
eigenvectors for fixed gain factors is given in Section 4. And
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finally, we show that the performances can be improved when
the centro-symmetric property of some of those covariance
matrices is taken into account in Section 5.

2.PARAMETERIZATION OF THE PROBLEM

We tackle the problem of an adaptive estimation of the m
eigenvectors q;,..,q, corresponding to the m largest (or
smallest) eigepvalugs (4;24,..24,) of a nxn covariance
matrix T =E[x (k)x" (k)] from different realizations x(k) of a
random vector x (*,T,H stand respectively for conjugate,
transpose and conjugate transpose). To solve this problem, a
method was proposed in [3] and then extended to the complex
case in [4], where the constrained maximizations of Rayleigh
ratios:

H. H.
Max q;T q; and Max q;T.q
lig;ll=1 ligll=1 q;Lsp{q;,.-.q;_1}
for i=2,.,m, (1a) and (1b)

that are taken into account in [2] by a Gram-Schmidt
orthogonalization are replaced by unconstrained
maximizations thanks to a Givens parameterization of the
different constraints. q; is the last column of a unitary matrix
Q, and the other vectors g; can be written:

:11=Q1[(; ],q2=Q1[Q2[§ ] ]

0
-, =Q,[% 0 (2a)
0
— 0
where Q; is the following unitary matrix of order n—i+1:
Qi=Ui.1"Ui,j"Ui,n—i
L 0 0 0
0 —siny;; cosy; ; 0
with U, = io: id; ; 2b
T 0 ePicos Vi e1¢'\’sinvlij 0 (2)
. 0 0 0 I

n—i-j

and y; : and ¢, ; belong to -5 +%]. This parameterization is
. v 1 2 .

unique except when the first component that appear in

0
Qi[ 1 ] for i=1,..,m is non zero

The maximization (la) is performed with the help of the
classical stochastic gradient algorithm, in which the
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parameters are '4’1.1’4’1.1""‘/’1,;1-1-¢1,n—1’ whereas the
maximizations (1b) are realized thanks to stochastic gradient
algorithms with respect to the parameters W .9; 1,...¥;,_;
®in_i-1» in which the preceding parameters
v, 1(k),¢l’l(k),..,l[l,'”_l(k),4)51}"_1(k) for [=1,..i-1 are injected
from the i-1 previous algorithms. The deflation procedure is
achieved by coupled stochastic gradient algorithms. This
rather intuitive part of the computational process was
confirmed by simulations results [3]. However a formal
analysis of the convergence and performances had not been
performed yet, and this indeed is the main problem addressed
in this paper.

3. CONVERGENCE OF THE COUPLED ALGORITHMS

The main difficulty in studying the convergence of the
stochastic gradient algorithms derived from Section 2 comes
from the existence of coupled algorithms. In order to study the
convergence, the coupled stochastic gradient algorithms need
to be globally written as :
! 8 g,(0,(0).x(k))
. = . +7 . (3a)
6, L., L® 1, g,,(8,(k),...0, (k),x(k))
. A T
with 8,= [V, 1.8, 1, Vinp9;, ] and
A T 2 A T 2
g,(8,x) = Vel(lqlxl hoeB(84,.1,0,,,x) = Vem(lqul ),

or more compactly :

O(k+1) = 8(k) + 7, HIO()x()] with 8 £ (67,0717 (3b)
The study of the convergence of the coupled stochastic
gradient algorithms (3b) is intimately connected to the
stability properties of the associated Ordinary Differential

Equation (ODE) introduced by Ljung [5]:
480 _
TRl

with h(B)é Eg[H(0,x(k))].

More precisely, if the gain sequence % satisfies the
conditions

h[0(5)] 4)

Zily v=temand lim =0,

we can apply a convergence result deduced from [6] (see
theorem 2.3.1 p.39): if the ODE (4) admits a globally
asymptotically stationary stable point 0,, then 8(k) defined
by (3b) converges almost surely to 0..

We can prove this result if we suppose that m=2, and the
extension to m>2 is straightforward. Since g,(8,,x) is the
derivative of a positive gradient field, the stationary point of
the block of (4) associated to 0, which is the solution of the
maximization (la), is globally asymptotically stationgéy
stable for that equation. Furthermore the k¥ component of —1
verifies for t—>+ee: &

do -
[F1, - @™ w0 )
Consider the Lyapunov function:

W 2 Elq (xS 4,

T

dw a6’ de
T2 =3 BV (450" + 3 BV (af0x™]

by hypothesis we have:
d92T T, 2 T, 2,142
?E[Vez(lqz(t)X(t)l = “I‘Z[Vez(lqz(t)X(t)I i

and since 8, and 8, are bounded, E[Vg (lqg(t)x(t)lz)] is also
bounded. So that, thanks to (5), we have lwith a0 and w>0:

ae] de
IT:'E[Vel(qu(t)x(t)lz)]ISIIEI-H ||E[Vel(|q§(r)x(t)|2)]|15ae‘”‘

Consequently,

u‘g’tﬂ 20+ IlE[ng(lqg(r)x(t)lz)]II2

Then W(t) — % ¢ is an increasing function of £, so
lim W(t) exists,
t— oo

which implies

ll_ii%@ =0 and then lim E[Vez(lq;(t)x(t)lz)] =0.
Therefore the stationary point of the block of (4) associated to
8,, which is the solution of the maximization (1b), is
globally asymptotically stationary stable for that equation.
We showed that the parameters that maximize the expressions
(1) are globally asymptotically stable for its associated ODE,
so that the convergence of the coupled stochastic algorithms
(3a) is ensured.

Unfortunately, in nonstationary environments the gain
sequences ¥ are reduced to constant "small" steps if we want
our algorithm to be able to track the slow variations of the
parameters. The convergence results cannot be applied stricto
senso. In this case, the algorithm does not converge almost
surely any longer. However, the weak convergence approach
developed by Kushner [7] suggests that, for ¥ "small enough",
the adaptive algorithm will oscillate around the theoretical
limit of the decreasing step scheme.

The key point in the above derivation is that the parameters
are bounded, so that all these results still hold for similar
algorithms using alternative parameterization of the
orthonormal constraints, provided the boundedness condition
is fulfilled. In particular, a similar class of algorithms can be
derived exploiting an Householder factorization of unitary
matrices [8]. The vectors q,,q,..,q,, can be considered as the
m last columns of the unitary matrix Q:

H H
I -2a a” In—l.—zazaZ 0 Ill—m-t’]._zamam 0
Q= T . T (6)
0 1 0 L,

where each vector a; € c"™ of unity norm is given by the
Givens parameterization described previously. The
maximizations (1) are also performed with the help of coupled
stochastic gradient algorithms, but with a completely
different deflation procedure, the convergence of which can be
proved exactly along the same lines.
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4. ASYMPTOTICAL VARIANCE CALCULUS

The variances of the estimated eigenvectors of the Givens and
the Givens/Householder algorithms can be computed for fixed
gain factors and in gaussian situations, thanks to the general
result (see [9] rem 2, pl04) : when Y0 and 7,—+c with
1,=ky, then 1/Ny [6(k)-0(r,)] converges in law to a zero
mean gaussian random variable of covariance matrix P that is
the unique symmetric solution of the continuous Lyapunov
equation:

G.P+PGI+R, =0 (7

where

+o0

Géﬂd? and R Zh_” covg[H(8,x(k)),H(8,x(0))] (8)

and the subscript , stands for the value of the functions
calculated for the parameter 6, that maximizes the expressions
(1). Then, if ¥ is "small enough" and k "large enocugh"”, 8(k) is
unbiased gaussian and has a covariance matrix approximately
equal to YP.

In the real case and for m=1, we have, thanks to the property:

dq, '

—=Qy(8,)D,(8)) )]
ae, Q,(8,)D,(8,

with Q,(8,)21Q,(8,),4,(8,)] and with D,(8,) a n—1xn-1
diagopal matrix where Dl(el)”_l,,,_1 =1 and Dl(Gl)k* =
I1.Z5. 1 cos(yy ) for 1sksn-2, the closed-form expression:

G =D,8)Q7(0,)(T,-4,1)Q,®,)D,(8,)  (10)

A closed-form expression for R is obtained for independent
observations x (which corresponds, most of the time, to
spatial situations):

R = D,(6,)Q7(8)4,T,Q,(8,)D,(8,) an

In the case of correlated observations x (which on the other
hand corresponds to temporal situations), we obtain a
different expression by examining particular cases. For a
MA(q) process the term AT, contained in (11) is replaced by:

gn-1 T,
3 Teq 40T, +T0q, T (q T )T T (12)

whege T, denotes the cpss-correlation Klatrix E(xkxg), where
Xy = [xpXp 0¥y p,q]" and where q;= q,(8,). And for an
AR(1) process the same term is replaced by:
2 T, T, T T,
Yt Te 9,917 +059, 9 Tp+q T, )T+ Ty) +

}gah—Z

2

T3
[T,4,91T,+T5a, 4T3 +(qT,a, )T+ TH)] (13)
where ¥ 4 E(x:), ) 4 E(xpx, ;) =a% and ", denotes the nxn

matrix whose entries are (I')); '

These results can be extended to m=2, the extension to m>2 is
straightforward but tedious. The expression (10) becomes:

o ] 14
- G21 G22 ( )
where G“ is given by (10), 622 by:
D,(6,)Q7(8,)Q7(8,)(T,-4,1, )Q;(8,)Q;(8,)D, (8,)

with Qz(ez)é[Qz(Oz),v(Bz)] and with D2(92) an-2xn-2
diagogal matrix where Dy(8,), , , , =1 and Dy(0,)5, =
T2 cos(w, ) for 1sksn-3."And G, is given by:

D,(6,)Q7(8,5Q7(8,)(T,~4,1,)Q,(8,)A®,.8,)
with:

dq
;.f' = Q1(91)A(ep92)

For independent observations x, the expression (11)

becomes:
[ Ry; 0 ]
R= 0 l{22 (15)

where R, is given by (11) and where R,, is

2,D,(8,)Q7 (0,)Q7(8, (T, +24,4,4DQ, (8,)Q;(8,)D,(8,)(16)

with Q,(8,)2(Q,;(8,),v(8,)] and with D,(,) a n-2xn-2
diagogal matrix where D,(8,), ,  , =1 and D,(8,),, =
1.5 cos(y, ;) for 1<k<n-3.

In the case of correlated observations x, R is no longer block
diagonal . We have:

R,, R
11 ¥i2
e [Bn R o
Ry Ry, 1n
with:
T 'T 'T !
R;1 =R;5 =Dy(8,)Q,(8,)Q, (91)r21Q1(91)D1(91) (18)
where T',, takes respectively the values:
gin-1 T, T, T, T,
2 rkqlqzrk+r:q1qzr{+(q2rkql)rk+(q2r{q1)r:
for a MA(g) process, and the value:
2 T, T, T, T T
2[;:1 r, qlqzrk+r{qlq2r£+(q2rkq1)rk+(q2rkql)r£+

2n-2
a y R

°1 [T,9,95T+Taq, 3T +(q3T ), a3 T3q, )T
_a -

2

for an AR(1) process. For a MA(g) process (resp. AR(1)), R;;
is given by the expression deduced from (12) (resp. (13)) and
(11), while_R,, is obtained by replacing in (16) the term
I' +24,q,4q, by I“x+2'},zq2 q;+I5,, in which Ty, is given by
(12) (resp. (13)), provided q, is replaced by 9.

Finally, we solve equation (7) in the situations of interest. We
note that (7) is of triangular form for independent
observations x in our deflation procedure. Then we can
evaluate the precision of the estimated eigenvectors or of the
estimated eigenspaces by derivation of a continuity theorem
[10]. So if yis "small enough” and k "large enough", the error
covariance matrix of an eigenvector and the mean square error
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of the projection matrix on a eigenspace are approximately

given by:

d¢1,(9) dq;(®) (9)
d6

< dq48) dq;(8
E"Zq(eac»q (8())-9,(8.)q (0.1 ~2m>: :;) : ; L HO

E[(q,(0(k))—q;(8.))(q,(8(k)—q; @)1~ (19)

We present on the figure below the case of a 3x3 covariance
matrix issued from independent, AR(1) or MA(2) consecutive
observations x. The trace of (19) parameterized by the
parameter a of the AR(1) process is displayed for q;. We
observe that this error increases when a decreases i.e. when
the two first eigenvalues get nearer. A simulation of the
algorithm shows that the speed of convergence also decreases
when a decreases. The values of the error are very close for
AR(1) and MA(2) processes but is about 12dB worse for
independent observations, thus are very sensitive to the
relations between the different observations x(k).

trace of error covariance matrix of first eigenvectar

S5.SPECIAL CASE OF CENTRO-SYMMETRIC
COVARIANCE MATRICES

To improve the accuracy of the subspaces estimation, we can
exploit the centro-symmetric or block-centro-symmetric
property of Some covariance matrices. This property occurs in
important applications: temporal covariance matrices issued
from a temporal sampling of a stationary signal, and spatial
covariance matrices issued from uncorrelated and band-limited
sources observed on a centro-symmetric sensor array (for
example on uniform linear arrays) [11] are centro-symmetric ;
spatio-temporal covariance matrices used in subspace methods
for blind identification of multichannel FIR filters [1] are
block-centro-symmetric.

In the real case, we can use the property that an eigenvectors
orthonormal basis of a symmetric centro-symmetric matrix
can be obtained from eigenvectors orthonormal bases of two
half size symmetric real matrices [12]. For example if n is
even, I can be partitioned as follows:

{5 ]
L, arg

where J is a matrix with ones on its anti-diagonal and zeroes
elsewhere. And we may determine n/2 symmetric (q=Jq)
[resp. n/2 skew symmetric (q =-Jq)] orthonormal
eigenvectors of I' from the orthonormal eigenvectors of
' +JT, [resp. I'l—Jl'z]. Then, we use the Givens or
Givens/Householder adaptive methods described previously
and we can show that the variances of the estimated
eigenvectors are reduced with respect to those obtained
without using the centro-symmetric structure of T

In the complex case, the preceding property does not exist
any longer : we only know that all eigenvectors g assocmted
to a simple eigenvalue are structured, of the form : q = ¢ Jq .
where the real number @ is a function of the eigenvector. But
nevertheless this property can be used in this context. For
example for n even we use the structure

q= 1[\[; [ elm‘;

to adaptively estimate the eigenvector associated to the
smallest or largest eigenvalue or I' according to an algorithm
derived from the Givens algorithm, and we can show that the
variance of the estimated eigenvector is also reduced when
compared to those obtained without using the centro-
symmetric structure of T.

* ] with llull =1
u
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