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ABSTRACT

We are interested in estimating the Doppler shift occurred
in weather radar returns, which yields precipitation velocity
information. Conventional techniques including the pulse
pair processor rely heavily on the assumption that the ad-
ditive noise is white and hence their performance degrades
when the noise color is unknown. Because the data length
for a given range gate is usually small, we employ the high
resolution MUSIC algorithm to estimate the Doppler shift.
The challenge lies not only in proving that MUSIC is appli-
cable to weather radar signals which are affected by multi-
plicative noise, but also in showing that MUSIC is robust
when the additive noise is colored. The resulting algorithm
can also be used to infer wind speed from a small number
of lidar observations where the velocity is approximately
constant. Assuming linear shear over a longer range, we
employ the ambiguity function to estimate the acceleration
and instantaneous wind velocity. Real weather radar and
lidar data as well as simulated examples are provided to
llustrate the performance of the algorithms.

1. INTRODUCTION

Doppler radar has become the primary tool of measuring
precipitation (rain or snow) in a large area. It operates
by transmitting microwave pulses to the atmosphere and
processing the returned signals. Atmospheric scatterers of
microwave pulses are hydrometeors which contain precipi-
tation information. The backscattered wave is then picked
up by the antenna and converted into digital samples.

The returned signal for a given range gate is modeled in
discrete-time as [3, p. 124],

z(t) = s(t) e?“°° + u(t),

where s(t) and v(t) are assumed to be zero-mean, circular
complex Gaussian processes. Multiplicative noise s(t) is as-
sumed to have a bell-shaped power spectral density (PSD)
which is narrowband and centered at zero frequency. Ad-
ditive noise v(t) is assumed to be white. The Doppler shift
wo (in rads/sec) is proportional to the speed at which the
scatterers are moving relative to the receiver.

The random amplitude model in (1) is adopted because
there is a large number of scatterers in a resolution volume
(typical dimension in the order of hundreds of meters), and
the received signal is a superposition of waves from all these
scatterers. Due to wind shear or turbulence, the scatterers
move relative to each other, have random positions, and
random phases. Such incoherence broadens the signal spec-
trum. The additive noise v(¢) is due to shot noise in the
receiver and cosmic noise.

The covariance of (1) is given by

t=0,1,...,N -1, (1)

r2(7) := E[z*(Q)z(t + )] = rs(7) e?woT 4 ro(7), 2)
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where r,(7) and r,(7) are the covariances of s(t) and v(%)
respectively. Because the PSD of s(t) is symmetric w.r.t.
the zero frequency, r.(7) is real. Moreover, if v(t) is white,
ry(7) =0, r # 0. Therefore, we have that

wo = arg[rz(1)]. ®3)

Sample estimate of (3) is obtained via

N-1
wo = arg [—le Z () (t + 1)] . (4)

t=0

The estimator in (4) is the so-called pulse-pair (PP) pro-

cessor [3, Ch. 6], which is the dominant technique used by

weather radar practitioners to infer rainfall speed.
However, the accuracy of the PP processor relies heavily

on the modeling assumptions and as we show in Section 4,

significant error occurs when v(t) is non-white (colored).
The Fourier transform (FT) of (2) yields the PSD,

Sa(@)i= ) 7a(r) €77 = 8, (w — wo) + Su(w).  (5)

T=—00

Under the modeling assumptions of (1), the PSD of z(t)
is bell-shaped centered at wo and is superimposed on a
flat background due to v(t). However, as reported in [6],
25% of the actual precipitation spectra deviate significantly
from this model. Anomalies include asymmetric spectra
and spectra exhibiting multiple peaks.

In (7], it is also observed that S;(w) may exhibit “a signif-
icant though relatively weak secondary peak that is clearly
separated from the main peak,” and that “the co-existence
of widely separated peaks will cause biases in the Doppler
shift estimates of the desired signal.” A means of modeling
the additional peak(s) is to allow v(t) to be colored.

In Section 2 of this paper, we extend the popular MUSIC
algorithm [4, Sec. 12.3] for constant amplitude harmonic re-
trieval to the random amplitude model in (1), and demon-
strate its superiority over the PP processor especially when
v(t) is colored.

Although Doppler radar is a useful tool to “see through”
a storm and measure wind velocity inside, it is not as pow-
erful as Doppler lidar for measuring wind under clear air
conditions. The principle of Doppler lidar is similar to that
of Doppler radar, except that microwave pulses are replaced
by laser beams, and scatterers are atmospheric aerosol par-
ticles instead of hydrometeors.

Reliable wind estimation is important not only for im-
proving weather forecast accuracy, but also for planning
and controlling spacecraft landing. In addition, the ability
to detect low altitude wind shear conditions such as mi-
crobursts is crucial to aircraft safety.

Although lidar and radar operate differently, the same
model (1) has been adopted for lidar returns [8]. In radar,
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all N samples are due to the scatterers in the same reso-
lution volume, and hence wo can be regarded as approxi-
mately constant. For lidar however, successive samples of
z(t) correspond to overlapping but different resolution vol-
umes, and hence only over a limited number of samples, wo
can be regarded as approximately constant. In general, wo
changes with ¢, and a larger ¢ corresponds to increasing dis-
tance and height. It is known that due to decreasing surface
friction, the average wind speed tends to increase linearly
with height (linear shear). In Section 3, we model lidar
returns as random amplitude modulated chirp signals, and
employ the ambiguity function to estimate wind accelera-
tion and instantaneous velocity. Such information could be
useful to identify potentially hazardous shear zones. The
performance of the algorithms is illustrated in Section 4
based on simulated as well as observed weather signals.

2. MUSIC IN COLORED NOISE

The MUSIC algorithm [4, Sec. 12.3] has become a bench-
mark algorithm for retrieving constantamplitude harmonics
in additive white noise, especially when the data length is
small and hence FFT based approaches have poor resolu-
tion. The objective. of this section is to show that at least
for a single harmonic, MUSIC is applicable when v(¢) is
colored, and when multiplicative noise is also present.

First, let us define (K'+1) x 1 vectors x(t) := [z(t) z(t+1)

. z(t+ K)]T, and v(t) := [v(t) ot +1) ... v(t + K)]7,
where T stands for transpose. The assumption that s(t) is
narrowband and lowpass ensures that s(¢) does not fluctu-
ate much within a processing window of length K +1, which
in turn, allows us to write :

s(t) :=[1e70... ? K0T (1) &7 := e(wo) s(t) e’“°°. (6)

Next, let us define R, := E[x(t)x¥(t)] to be the correla-
tion matrix of x(t), where ¥ denotes Hermitian. Similar
definitions hold for R, and Ry. Due to the zero-mean and
independence of s(t) and v(t), we obtain via (6)

R. =R, +R, = o%e(wo)e” (wo) + Ry, o? := E[|s(t)|22,)
7

Let Ai(R) denote the ith éigenvalue of R and assume

w.lo.g. that Aiy1 (R) > Ai(R); i.e., in ascending order.

For the constant amplitude harmonic in additive white
noise model, z(t) = A exp{jwot} +v(t), we find R, = A?
e}wo) e (wo) +02 1. It follows that e(wp) is an eigenvector
of R; with corresponding eigenvalue Ax41(Rz) = (K
1)A%+02. Since the rest K eigenvectors {q;}/<; of R, must
" be orthogonal to e(wo), it follows that A;(Rz) = o2, i €
(1, K]. Therefore, by eigen-decomposing R and identifying
the eigenvectors corresponding to the least K eigenvalues of
R, which are not affected by the signal, one finds the so-
called noise subspace, Q := [q1 ... qx]. Because R.q;
= 02q;, we find that A? e(wp) e wo} q; = 0, and hence
e(wo) L qi, 1 €[1, K], or, e(wo) L Q. If one computes

f(w) == e (W)QQ¥e(w), e(w):=[1¢“...e/*“]T, (8)

and plots the so-called MUSIC pseudo-spectrum 1/ f(w) for
we f—r, ), then a sharp peak occurs at wo.

The preceding analysis does not go through when vgt) is
colored. However, we recognize that the key effects of the
noise color are in disturbing: (k1) identification of the noise
subspace; and (ng) the orthogonality. The following as-
sumption is made to cope with (k1): (al) S,(w) is smooth.
This is easily met by all stationary and mixing [1, p. 9]
processes. In addition, we assume (a2) o2 > max, S,(w),
which helps us to approximate (k2) when v(t) is colored.
Note that (a2) amounts to a high SNR requirement.

The following interlacing theorem w.r.t. (7) is useful:

Theorem 1 {5, p. 182-183]: If the eigenvalues of R, and
R. are arranged in non-decreasing order, then it holds that

Ai(Ro) € A1 (Rz) < Aiga(Ro), i€ [1L,E =1 (9)

According to (9), we find,
A (Ro) € X2(Ra) € ... < Ax(Ra) € Axga(Ry).  (10)

The next theorem gives bounds on the smallest and the
largest eigenvalues of R, in terms of those of R,.

Theorem 2 [5, p. 184}: Let R,, R,, R; =R, + R, be
Hermitian matrices, with the eigenvalues arranged in non-
decreasing order. Then for 1 <1, i < K+1,1+i< K42,

Api—1(Rez) 2 M(Ro) + Ai(R,). (11)

Since R, of (7) has Ax+1(Rs) = (K+1)o?, and Xi(R.) =
0 for ¢ € [1, K], it follows easily from Theorem 2 that

A (Rz) > M(Ry), (12)
Ax+1(Rq) > max{Ax+1(Ro), M(Ro) + (K + 1)o7} (13)

Combining (10) and (12), we see that the K least eigen-
values of R are restricted to within [A1(Rs), Ax+1(Ra)]-
Additionally, a result of [1, p. 74] indicates that under (al),
the (perhaps re-ordered) eigenvalues of R, tend to S, (w) at
w=2xl/(K+1),forl € [1, K+1]. Because S,(w) is smooth,
we infer that the eigenvalues of R,, and hence Ai(R:),
i € [1, K], lie close together, and are not affected muc
by the signal. Moreover, (13) indicates that the largest
eigenvalue of R is well separated from the rest. Therefore,
Q :=[q1 ... qQx] gives rise to the “noise subspace”, where
{a; }¥, correspond to the K least eigenvalues of R..

o assess the orthogonality between e(wy) and Q, let g;
be normalized. In the sequel, we shall use ||-|| to denote both
the vector and matrix norms. For vectors, it is the £; norm
5, p. 283], whereas for matrices, it is the spectral norm
5, p. 295}, defined for square matrices as the maximum
absolute eigenvalue.

It follows from (7) that

R.q: = Reqi—R.qi = [Ai(R:)I - PPD(R,)P) qi, (14)

where P denotes the unitary eigenvector matrix of R, and
D(R,) is the diagonal matrix consisting of the eigenvalues
of R,. Next, we infer from (14) that for Vi € [1, K],

IR.qil| < [[A:(Ra2)I - D(Ro)[| = max{|A:(Rz) - Ai(Ro)|}-

15
From (10} and (12), it follows that A1 (R.) < A Rzé<)
Ax+1(Ry), Vi € [1, K]. Hence, we have |A;(Rz) — Ai( ,JI
< JA1(Ry) — Ax41(Ry)|. Additionally, it is known that
all eigenvalues of R, are bounded by the minimum and
maximum of Sy(w) [4, p. 140]; we thus rewrite (15) as

IRoai] < [max 5, (w) — min S,,(w)] . (16)
Furthermore, we obtain from (7) and (16) that
lle(wo)e® (wo)a;ll < aiz [max Sy(w) — min S, (w)] . (17)
Under (a2) and based on (17), we have |le(wo) e (wo)
ai]| = 0, which holds only when e (wo) a: = 0, i € [1, K],
or, eH(wo)Q =~ 0. This concludes our analysis of the ap-

proximate orthogonality condition in a colored w(t) sce-
nario. As in the constant amplitude case, the MUSIC
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pseudo-spectrum is defined as 1/f(w), where f(w) is given
by (8). The maximum of 1/f(w), or, the minimum of f(w)
yields @o as the MUSIC frequency estimate.

Next, we wish to establish a bound on the error @ — wo,
which is due to colored »(t). The Taylor series expansion

of (8) around &o, with f'(o) =0 and f(do) > 0, yields:

Flwo) = f(@o) + %f”(&)o)(wo - &) > %f"(d)o)(wo — Gp)?.

(18)

Since |le(wo)e™ (wo)aill = lle(wo)ll le® (wo)qi| = VE +1
|e¥ (wo)q:}, we have from (17) that fori € [1, K],

le¥ (wo )] < maxy Sy(w) — ming S.,(w)‘ (19)

VK +102

The quadratic function in (8) can be written as f(wo) =
Zf_{__l |e¥ (wo)q;|?, and based on (18) and (19), we obtain:

2K maxy Sy(w) — ming Sy (w)
(K +1)f" (@) o} ’

lwo —&| <

(20)

F"(@0) = 2Refe’® (@0)QQ" e’ (o) + e (00)QQ e” (@0)].
We observe the following w.r.t. (20): i) Its r.h.s. is zero
when v(t) is white, and hence &o is theoretically error-free
(recall that throughout Section 2 we have ignored finite
sample effects); ii) The less fluctuation in S,(w), the smaller
the error. This is intuitively true since a peaky S. (c.n.rgl may
confuse the algorithm to treat v(t) as a random amplitude
harmonic; iii) The error decreases when the SNR increases.

3. ACCELERATION ESTIMATION

As mentioned in the introduction, the Doppler shift cannot
be regarded as constant over a long range in lidar applica-
tions. This prompts us to remodel z(t), under the linear
shear condition, as a random amplitude chirp signal,

o(t) = s(t) 034D L y(t), t=10,1,...,N —1. (21)

The acceleration in (21 is az rads/sec?, whereas the in-
stantaneous frequency (IF) is (2azt + a1) rads/sec. The
2nd-order moment of () at lag 1 is given by

#(0) = Bla(t)a”(t = 1] = eas (V27D denn (1)

22
where ¢2.(1) := E[s(t)s*(t — 1)] and similarly for C2,,(1)).
Apparently, z(1) is a constant amplitude harmonic process
at frequency 2a». In practice, one estimates (22) via the so-
called ambiguity function {AF) (e.g., [2]), defined as 2(t) :=
z(t)z*(t—1), and then obtains 2a; from any of the frequency
estimation schemes (e.g., FT, MUSIC). Once a2 is found,

one demodulates z(t) by exp{—jazt’}, and obtains

(1) = z(t) €77 = () &M 4 o(t) eI, (23)

Under the high SNR condition (a2), (23) approximates the
random amplitude harmonic model in (1), and @; can be
estimated as usual.

4. EXPERIMENTAL RESULTS

We provide here some simulated as well as real data exam-
ples to illustrate the algorithms developed in this paper.

Example 1: Since the “ground truth” of a storm is of-
ten not available, it is difficult to compare estimation al-
gorithms using real data. The method of [9] for gener-
ating weather-like signals has been useful in evaluating
various algorithms, since one knows the “truth”. Figs.

la and 1b show respectively the in-phase (I) and quadra-
ture (Q) component of a simulated weather radar signal,
whose true PSD is shown in Fig. lc. The spectrum of

s(t) is bell-shaped generated according to S,(w) = 10/v27
exp{—50w?}, whereas the spectrum of v(t) is non-flat as in

Sy(w) =[12.5—-10 cos(wl)(];l. The Doppler shift wo was cho-
sen to be 1.5. The MUSIC pseudo-spectrum is shown in Fig.
1d which peaks around wp. The meantstd of &o obtained
from 100 independent realizations were 1.0995 + 0.1413 for
the PP processor, and 1.4941 3:0.0335 for the MUSIC algo-
rithm. The latter is seen to be robust to colored v(t).

Example 2: 128 samples of radar data were collected from
a rain storm occurred in Norman, OK, on June 10, 1994.
Figs. 2a and 2b plot the I, Q components, and Fig. 2¢c shows
the PSD estimate. Since the spectrum is single modal and
bell-shaped, the PP processor yielded &o = 1.4359 which
can be regarded as reliable. Fig. 2d plots the MUSIC
pseudo-spectrum which peaks at 1.4421, and agrees very
well with the estimate from the PP processor.

Example 3: Fig. 3a/b shows 32 samples of the I/Q com-
ponent of lidar data collected under fair weather condi-
tions. Fig. 3c illustrates the PSD estimate. The presence
of the secondary peak leads us to believe that the estimate
@o = —0.1961 obtained from the PP processor must be bi-
ased. The MUSIC pseudo-spectrum is plotted in Fig. 3d
whose peak location at @o = —0.7316 is close to that in-
dicated by the PSD. Note that the power-weighted mean
frequency estimate (the centroid of the PSD) [3, p. 131],
will also be biased in the presence of the secondary peak.

Example 4: We demonstrate here the AF approach for es-
timating time-varying wind velocity. In this particular case,
the wind velocity is decreasing which may be due to the di-
rection of the wind turning away from the line-of-sight of
the laser beam. The estimate of the IF obtained from the
short-time FT (STFT? is depicted in Fig. 4a whereas the AF
approach yielded the IF profile as shown in Fig. 4b. The ac-

celeration was estimated to be —0.024 rad/sec’. Note that
one can always perform a linear least squares fit to Fig. 4a
in order to obtain an acceleration estimate. However, such
a multi-stage procedure is computationally more involved.
Further, it relies on the STFT estimates, which could be
subjective when it comes to choosing appropriate window
lengths and the amount of overlap.
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Figure 1. Simulated weather radar signal, PSD, and MUSIC pseudo-spectrum
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Figure 3. Real weather lidar signal, PSD, and MUSIC pseudo-spectrum
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