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Abstract

The robustness of a subspace generalized likelihood ra-
tio test (GLRT) detector to signal mismatch is addressed
for data conforming to the generalized multivariate anal-
ysis of variance model. This model assumes a deter-
ministic signal of known form in the presence of un-
known, colored, Gaussian noise. The subspace GLRT
compresses data into a lower-dimensional subspace
prior to detection. It is shown in this paper that a sub-
space GLRT reduces the performance loss due to mis-
match relative to that of a non-subspace detector.

I. Introduction

A common signal processing problem is the detection of
a signal having a known form in the presence of noise.
This problem occurs in active radar, active sonar, com-
munication systems, biomedical stimulus response, and
many other multi-sensor or time-series applications.
For a radar array, a signal form is typically derived
from known sensor locations, transmitter location, and
frequency. In time series applications, a signal form is
derived from the relative amplitudes as a function of
time. We will consider as unknowns the noise covari-
ance matrix and the signal magnitude. The signal is ab-
sent when this magnitude is zero. Note that this detec-
tion problem differs from a direction of arrival estima-
tion problem where the task is to ascertain the existence
of a signal of unknown form.

Subspace generalized likelihood ratio test (GLRT)
detectors have been shown to yield strong performance
gains over full data space detectors (e.g. [1] and [2])

when the number of data vectors is limited. These sub-
space detectors are constructed by passing data through
a linear ‘subspace’ (matrix) transformation prior to per-
forming signal detection. See figure 1. Performance in
this case is measured by the detector’s probability of
detection (PD) for a fixed probability of false alarm
(PFA). A subspace detector gains this performance in
three primary ways. First, a priori information about
the interference scenario often can be folded indirectly
into the detector through a judicious choice of subspace
transformation. Direct inclusion of additional informa-
tion into the full data space model usually leads to an
intractable problem. Second, a subspace detector has
significantly fewer model parameters. This means that
there is effectively more data to estimate each parameter.
Hence, the estimates tend to be more stable which im-
proves subspace detector performance. Third, because
a subspace detector has fewer parameters to estimate it
requires less data to exist. In many cases, a subspace
detector can exist with good performance when insuffi-
cient data exists to construct the full data space detector.
The disadvantage of subspace processing is that most
non-adaptive transformations will tend to diminish the -
signal-to-noise ratio (SNR). A loss in SNR corre-
sponds to a loss in detection performance.

The relative advantage of subspace detection over
full data space detection (when T =1) depends almost
entirely upon the amount of available data. It is shown
in [1] that with short data records, statistical stability
dominates detector performance and subspace detection
is preferable to full data space detection in spite of
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Figure 1: Block Diagram of a Non-Adaptive Subspace Detector.
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typical SNR losses. With large data records, SNR
dominates detector performance and the full data space
detector has better performance.

This paper discusses a fourth advantage of subspace
detectors. It is shown that subspace GLRT detectors
are more robust than full data space GLRT detectors to
signal model mismatch. Kelly and Forsythe [4] define
signal mismatch as the effect of imperfect knowledge of
the form of signals‘in the GLRT model. Robustness is
demonstrated in this paper by showing that subspace
processing reduces the effect of mismatch between the
assumed signal model forms and true signal model
forms. These reductions occur for two reasons.
Primarily, mismatch is reduced when data is trans-
formed into a subspace because linear compression
tends to diminish the differences between data forms.
Secondarily, subspace detectors can be less sensitive to
changes in SNR that result from erroneous signal model
assumptions.

For notation, bold lower and upper case roman let-
ters designate column vectors and matrices, respec-
tively. Script €C/xX refers to the Jx K complex product
space. Superscript ‘H’ denotes the complex conjugate
transpose. Let vec(Z) be the operator which constructs
a column vector by stacking columns of the matrix Z.
Finally, ‘®’ denotes the Kronecker product (See [4]).

II. A Subspace GLRT Detection Model

Let X represent an N by L matrix of data formed by .

concatenating L snapshots of the N-dimensional data
observations. The snapshots are assumed to be station-
ary, statistically independent, colored, zero-mean, mul-
tivariate Gaussian distributed noise with an additive, de-
terministic signal. The covariance, R,, of each snap-
shot is assumed unknown, and the form of the signal to
be detected is given by E[X]=abHC with ae €V,
Ce CM*L known, and be €M is an unknown, non-
stochastic, complex matrix of regression parameters.
Hence the measured data array is modeled as vec(X) ~
N(vec(abHC), R, ®I,). This is a generalized multi-
variate analysis of variance model (GMANOVA) [2].

A subspace transformation T € CV*F, is a fixed lin-
ear mapping from an N-dimensional space into a
smaller, P-dimension space. The columns of T are as-
sumed to be linearly independent. Methods for

choosing T are given in {1] and [2]. The transformed
data Z=THX e CP*Lis in the same parametric family:

vec(Z) ~ N(vec(THabHC), (THR,T) ® I,). €))
To yield a meaningful test, we require that T be chosen
such that THa#0. The GLRT under this distribution
can be expressed as [4; p.23]

alT(zP, 2" 'THa , o
aHT(2ZH) 'THa }fo ’
where Py =1, - CH(CCH)_IC, and where we require
L2M+N in the full data space (when T =I) and
L>2M+P in a P-dimensional subspace. The PD and
PFA of (2) are known in closed form and are given in
[1] and [2]. The PFA is a function only of the test
threshold ¢y and dimensionality parameters L, M, and
P. The PD is a function of these parameters as well as
the non-adaptive subspace SNR

SNRy = (PHCCHb)aHT(T#R, T) 'T"a).

3
III. Signal Mismatch

Signal mismatch results when there is imperfect knowl-
edge of the vector a. Hence signal mismatch is an issue
of primary concern to a detector’s robustness. This
section will show that subspace processing reduces the
effect of mismatch between the assumed signal vector a
and a true signal vector &.

The hypothesis test’s performance depends upon the
signal vector only through the non-adaptive SNR pa-
rameter (3) used in the PD, and then only through the
term THa. The PD is a monotonically increasing func-
tion of SNR. The actual performance reduction result-
ing from using the assumed subspace signal THa in-
stead of the true quantity THa depends upon the angle
between these two vectors. Kelly [3] shows that the
true, full space (T =1,), non-adaptive SNR parameter
SNRy, = (bHCCHb)(aHR;!4) is attenuated by an amount

|a"R,'a |2

(5HR ‘15)(aHRx‘la)

X

4

cos{By) =

due to mismatch between the assumed signal model a
and true signal vector &. Here, C0S2(9N) represents the
cosine squared of the angle between a and @ in an ap-
propriate inner product space. This quantity is less than
one whenever a#a. It is easily shown that the
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subspace non-adaptive SNR (3) is attenuated by a simi-
lar amount

cos8p) =
|s# (TR, 1) T |2

(5HT(THRXT)"Tﬁs)(aHT(THRXT)“THa)

The relative mismatch performance of the subspace de-
tector is assessed by comparing cos?(6p) to cos2(8y).
For instance, if cosz(GN) is smaller than COSZ(GP), then
the full-space SNR loss is greater than the subspace
SNR loss.

To compare (4) with (5), begin by using the singular
value decomposition (SVD) of RY2T = UZVH, The
first P columns of U, denoted by {u;, uy, u3, -+, up},
form an orthonormal basis for the range space of
R§/2T. The remaining N-P columns, denoted by
{up41, Upy, -+, Uy}, form an orthonormal basis for its
orthogonal complement. Let d = UH(R;"2a) be the co-
ordinate representation of the mismatched quantity
R;I/Za in this new basis. The coordinates for R;I/Za
can be separated into two sets g and h such that
dH=[gH, hH]. In particular, the P coordinates of

&)

R;1/2a in the range space of RE/ZT are given by
g=[uy, uy, -, up]H(R;l/Za), and the (N -P) coordi-
nates of R;I/Za in the null space of R¥/2T are given by
h={up,;, upsz, -, uy JA(R5%2a).
quantity R;l/zﬁ has a coordinate representation defined
by d = UH(R;"24) in the same new basis. As was true
above, d can be separated into two sets g and R such
that d = [g hH]
Using these definitions, it is easily shown that:

A similar, true

Figure 2: The Subspace Angle 8p is Smaller.

[’
cos(Oy) = (Ti—Lfi)(dl_Hd and
cos(6p) = & 2" g)(gl Fg) (6)

With these definitions, the full space angle cosine can
be rewritten as follows:

lg g+hHh ‘2
(g g+h h)(g g+hHh)
g"g[" +| 8" [" + 2Re{(g"g)R"n))
(HEIy FE
(&% + 5%

NRGIRS

where we have used
el < e el

< Re(] (8"g)i"h) D =|(2")i™n)| <|g¥g | 6"n|

The transformation T is constrained to span the as-
sumed signal a. Therefore, the term |g|? is greater than
zero. If the assumed a is not perpendicular to the true
4, then the term | g |? is also greater than zero. The goal
in designing a subspace transformation T is to make the
non-adaptive SNR, (3), approach the upper bound
SNRy, (see [2]). This upper bound is reached when
Ry "2 a lies in the range of columns of Ry J2T. For such
a well designed T, h= 0 In this case,

cosHOy) =

)

cos?(Oy) S ————
hﬁwﬂﬁ ©
~H |2
< |~g el 5 = cos¥(6p)
Hilds

with equality when Ry 23 also lies in the range of
Ry Har. By symmetry, if Ry 24 lies in the range of

H/2T then h =0, and again cos?(8y) <cos?(6p). A
perturbation argument shows that subspace detection
remains more robust than full space detection under
mismatch when either R;I/2a or R;I/ZE’I lies close to
the range space of R¥/2T. Thus if T and a are chosen
reasonably well, then cosz(BN) <cos¥( 0p), and the sub-
space SNR loss is less than or equal to the full space
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SNR loss resulting from a mismatched signal. Figure 2
illustrates how the angle between vectors is reduced by
the subspace mapping.

Not only does a subspace detector loose less SNR to
signal mismatch, but the loss of SNR can affect detector
performance to a smaller degree. This effect is illus-
trated in the following section.

IV. Examples

To demonstrate the effect of mismatch loss on SNR,
consider a ten-dimensional system (N = 10) with an as-
sumed steering vector a=[1,0,0,...,«]. For simplic-
ity, assume that the noise is white (R,=1;,) and that
the subspace transformation T compresses data by
throwing away data from the last six sensors. This
simple transformation is non-optimal because it know-
ingly looses SNR by throwing away signal energy ()
from the last sensor. However, it offers a simple
demonstration of a situation where R;I/Z a does not lie
in the range of columns of RE/ZT. Let the true steering
vector & be perturbed from a by a Gaussian distributed
random vector with covariance ﬁlm. Figure 3 plots
the mean of the difference in mismatch loss (cos?(6p) -
cos2(8y)) over 30,000 trials as the amount of signal
amplitude, a, outside of the range of RE/ZT increases.
Also plotted in figure 3 are the percentage of trials
where subspace SNR loss was greater than the full
space SNR loss. Note that even when one half of the
signal model lies outside of the range of R§1/2T, i.e.
=1, the SNR loss due to mismatch in the subspace
detector is less than that for the full space detector in
more than 70% of the random trials. If the amount of
signal amplitude outside R¥/2T is small, then subspace
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Figure 3: Mean of mismatch loss differences and
cases (%) with inferior subspace performance.
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Figure 4: Full and Subspace Performance.

SNR loss is nearly always less than the full space loss.
as predicted by the analysis in the previous section.

Now consider figure 4. This figure depicts the PD
as a function of non-adaptive SNR in the absence of
signal mismatch. Fifteen snapshots of data (L= 15) are
assumed with N=10 and a PFA = 10-%. The subspace
results assume that a transformation from ten to four di-
mensions leads to an SNR loss of 3 dB; i.e. the sub-
space SNR is 3 dB less than the values depicted on the
x-axis as “System SNR”. If the system SNR were 27
dB and the full space mismatch resulted in a 4 dB loss,
then the full space PD would decrease from 0.997 to
0.508. Because the subspace mismatch is less than 4
dB, the corresponding subspace PD decreases from
1.000 to an amount still greater than 0.998.
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