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ABSTRACT

How does one adaptively split a measurement subspace into sig-
nal and orthogonal subspaces of reduced rank so that detectors,
estimators, and quantizers may be adaptively designed from
experimental data? We provide some answers to this question by
decomposing experimental correlations into their Wishart distrib-
uted Schur complements and showing how these distributions
may be used to identify subspaces.

1.0 INTRODUCTION

In [1], the authors outlined a number of problems where low-rank
approximations reduce the sum of bias-squared plus variance to
minimize mean-squared error. These ideas were further extended
in [2]. All of the solutions advocated in these two papers required
knowledge of the second-order information for their implementa-
tion. Since then, there has been a considerable amount of work
done on subspace identification as a preliminary step to rank
reduction [3] - [S]. In [3] the authors derived hypothesis tests to
determine signal rank in the presence of AWGN, assuming that a
useful decomposition of subspaces can be made. The work of [4]
and [5] has clarified the probability that a useful subspace decom-
position can be made.

In this paper we pose a sequence of problems which generalize
the problems in [1] - [5] and illuminate the study of subspace
splitting from random data. These problems and the connections
between them are illustrated in Figure 1. Problem ! is a standard
linear minimum mean squared error (LMMSE) estimation prob-
lem of estimating a random vector x from a random vector y
when second-order information is known. When snapshots of x
and y, assembled in matrices X and Y. are available instead of the
second-order information, a least squares (LS) approach 1s used
to estimate the matrix X from Y. This is Problem 2 in Figure 1.
The performance of the LS estimator can be charactenzed in
terms of estimation error covariances from Problem 1. and this
forms the connection between the two problems. In Problems 3
and 4, we specialize the definitions of X and Y. In Problem 3. X
and Y are resolutions of a data matrix onto subspaces generated
by known second-order information. In Problem 4, X and Y are
projections onto estimated subspaces generated by the data
matrix itself. First-order perturbation models for Problem 3 may
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be used to analyze Problem 4, and this forms the connection
between the two problems.
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FIGURE 1. Framework of Problems

2.0 Problem #1: LMMSE Estimation

In Problem #1, , we are given a single snapshot of N-dimensional
data, z* = [x* y* ], drawn from a distribution with known covari-

ance R__, and asked to estimate x from y . The covariance matrix

2z’
exhibits the following structure and Schur decomposition:

.. = Ezz* = Rox Ry
- Ry Ry,

v
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In this decomposition, T, &, e - and Q are defined as follows:

=
"

T = R, R:!:LMMSE filter

= Ty : LMMSE estimate of x
e = x-Ty : estimator error

0

2)
- - -1 . :
Qg=F [exex*] =R, - Rx),R”.Ryx. €rTor covariance

This is a well understood problem with all its connections to the
Wiener-Hopf equations, conditional mean estimators, and the Stat-
istician’s Pythagorean Theorem [6]. Analogous results for esti-
mating y from x can be obtained.
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3.0 Problem #2: Least Squares Estimation

When second-order information is unavailable, as in adaptive fil-
tering, we use snapshots of x and y, assembled into data matrices

X and ¥, 1o approximate the LMMSE filter T with the LS filter T,
Assuming that the snapshots are independent Gaussian random
vectors, we derive the performance of the LS filter and connect it
with error covariances from Problem 1. We then derive a
reduced-rank approximation to the LS filter.

3.1 Filter Characterization

Let Z represent an NxM data matrix (M>N), which can be parti-
tioned into X (rxM) and Y (N-rxM):

besdo [l

The correlation matrix for Z is a crude estimate of R, :

R = zz* = |[XX* XY* )
YX* YY*

The Schur decomposition of ZZ* exhibits tHe following struc-

ture:
zr:PﬂQ” o S
010 Yy |T*1

In this decomposition T, X, £ «»and Q are defined as follows:

T = Xy*(Yy+*)-!:LS filter
TY = Xy*(yy*)-ly = XP,, :LS estimate of X

[
[}

by
>e
[}

X-X = X-XP, = XPy, : estimator error (6)
Q = EyE,* = XX*-XY*(YY*)-lyX*
= XP;, X* : error covariance

The error matrix Ey is orthogonal to the estimator X and the
input matrix ¥

YiE* = L =
XEy" = XP, PLX* =0 0]
YEx" = YPLX* = 0 ®

These formulas mimic the structure and behavior of the Gauss-
Markov formulas of Problem 1, with exact covariances reptaced

by estimates. Furthermore, X and E x orthogonally decompose
X:

9

Equation (9) leads to the geometric interpretation illustrated in
Figure 2.

FIGURE 2. Geometric Interpretation

3.2 Performance

Suppose the columns of the data matrix Z are Gaussian, indepen-
dent, and identically distributed with zero mean and covariance

matrix RZ_ . Then the conditional distributions of X, £ x.and X

can be characterized in terms of the Vec(.) operator:
Vec (X1Y):N | (P, ®I)m, P, ®Q]
Vec (ExIY) :N[(Pi,—, ® I)m, P ®0]

Vec (X1Y):N[m,I® Q]
m = Vec(R_R;Y)

(10

The means and covariances of X and E x add to give the mean

and covariance of X. This is a statement of the Statistician’s
Pythagorean Theorem [6].

The random matrix XX* is Wishart distributed with parameter-
ization W_(M, R xx @) . where W (M, Q, ©) denotes a Wishart

distribution with M degrees of freedom, covariance @, and non-
centrality parameter © for an rxr matrix (© = 0 is a central

Wishart). The conditional distributions of XX*, and E4E,*,
given Y, are Wishart with the following parameterizations:

XX":W, (M-r,0,0) ;0=R,_R;!YY*R;IR

a Y w0
ExEx")Y:W (M-N+r,0,0)

Since the conditional distribution of EyEy* is independent of ¥,

the unconditional distribution remains Wishart. Ey and X are

conditionally Gaussian and orthogonal, meaning XX* and
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EyEy* are conditionally independent. The conditional joint
density of XX* and EyE,* can be factored into its conditional
marginals:

£ XE ExEY ) = £ REMD) £ By )

e O (12)
= F(XXMY) £ ExEy

Taking the expectation over ¥, shows XX* and E E,™ are

unconditionally independent:
f(fo‘(*, EXEX*) = f(XX*)f(EXEX*) (13)
XX* is the sum of two independent random matrices, one of
which (EyEy* )isW, (M- N+r, Q,0) . This allows us-to write
the characteristic function of XX™ as the ratio of the characteris-

tic function of XX* and EyE,* :

|I+j.QRxx|‘M
[T+ j g~ ™M-N+n

@ ..0JQ) = (14)

This is a generalized Wishart that completely characterizes the
performance of the estimator X .

3.3 Applications

In this section we approximate the LS filter T with a low rank fil-

ter Tk. Figure 3 illustrates the synthesis and analysis filters for

going back and forth between the data X and the error E .

By X Eyx
F -7

Y Y ¥
i

FIGURE 3. Filtering interpretation of Problem #2

Replace T in the figure with a low rank approximation. Tk , to
produces X ¢ and E  » which are the low rank approximations of

X and EX:

B _|1-T, H _|rr-1, {Ex:l s

x) o7 |l o 7 |l¥

The error covariance of the reduced rank estimator 1s

EES = Q0+ (T-TyYy~(T-Ty* (16)

If T(Yy*)V2 = UZV*, where X = diag{Z,, X _,} . then

minimization of the extra covariance (T-T,)YY*(T-Tp*
yields the solution

7, = v % Oy vy 122 v O g = P, T amn
00 00 ¢

Equation (17) characterizes the reduced rank LS filter Tk , which
is a data version of a reduced rank Wiener filter [6].
4.0 Problem 3: Resolution onto known prior subspaces

Suppose the matrices X and Y are projections of a data matrix, W,
onto subspaces generated by the covariance matrix R, . Prob-

lems that fall into this category include vector quantizers, low-
rank approximations, and threshold effects.

Define the matrix Z as a resolution of a data matrix W onto the

modes of W:
U*
z= X = |75 |lw
Y UO*

(18)

If the columns of W are drawn from a Gaussian distribution, then
the columns of Z are drawn from a Gaussian distribution with

covariance R .

R, = diag {Z, X} (19)

The least squares filter for estimating X from ¥, and the corre-
sponding error covariance, can be obtained by specializing the
formulas in equations (6):

-

T, = U*,WW*U (U*gWW*U)~1: LS filter
EE* = U*wpL *y - . 20
EES =U, WP(UO‘W)_W U, : error covariance

The statistical distributions of E.E.*, XX* and XX* for this

problem are obtained by specializing the parameterization of the
Wishart distributions in the previous section:
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EE"W (M-N+rZ,0)
XX*= UrZZ*U W, (M,X,0) @n
XX' W (N-r,Z,0)

Similarly, the least squares filter, and the corresponding error
covariance for estimating Y from X is

UXoWW*U _(U* WW*U )~ : LS filter

(22)
EE* = L *U . - 4
EqEy, = U*OWP(U:‘W)*W U, : error covariance
The distributions of EqEy*, YY*, and ¥7* are
EoEy Wy (M~r,2,,0)
YY*= UprZZ*Uy: Wy _ (M, 2, 0) (23)

v wy_ (nz,0)

Sufficient conditions that a useful subspace decomposition can be
made were identified in [4] and [5]). These conditions invoive the
energies resolved by projecting measurements onto known prior
subspaces. In the notation in this paper, the probability of a suc-
cessful decomposition is :

(29

N-r r

. P[trYY* rXX* 0]

From the distributions of XX* and YY* we may numencally
compute this probability [5].
5.0 Problem 4: Resolution onto estimated subspaces

Finally, we project the data matrix W onto estimated subspaces
U, and U, to produce X and ¥. Order selection, universal cod-

ers, and low-rank approximations of random vectors are examples
of problems that fall into this class. A first-order perturbation
model for the estimated subspaces ties performance of solutions in
this class of problems to error covariances in Problem 3.

Define the matrix Z to be

U *
z= X = [Tt |w 25)
Y| |y

where U, and U, are subspaces generated by W-
*
W = [U, U)Jdiag (£, 5} [U, U] (26)

The correlation matrix for Z is

2Z* = diag{Z, X,} 27N

The least squares filters and corresponding covariances are

T,=0: 0, =% o8

T,=0: Qz

4

In [3], the authors model U, interms of U s and U, under the

assumption that a useful decomposition can be made. Their
model is U, = (Uy+TU )V, where V is an arbitrary rotation’

matrix. They solve for T by minimizing ”UO*W+ TU S*W“ P

But this minimization produces the LS estimation of Y from X
with T described in equation (22). Therefore, we conclude that

the model for U, is a rotated version of the error in estimating Y

from X, and the energy resolved onto U, is approximated by
rr(EOEO*) . where EgE* is described in equation [22]. Simi-

larly, the energy in U | is approximated as tr( E :E x*) .
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