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ABSTRACT

This paper examines an alternative multi-dimensional
adaptive array processing architecture which provides a
unique highly-parallelizable algorithm suitable for dis-
tributed processing. The principle is to perform inter-
ference cancellation on each element using a different
sparse sampling of the remaining elements as auxiliary
inputs. By doing so, special correlations in the data can
be exploited to significantly reduce the degrees of free-
dom required in each adaptive process. This reduces
both the computation count and the number of samples
required for adaptivity. An example space-time adap-
tive nulling application of airborne clutter shows near
optimal performance with a factor of four computational
savings over equivalent space-time techniques.

1. INTRODUCTION

This paper addresses an alternative approach to adap-
tive array processing which exploits a priori knowledge
of the interference scenario to achieve computational
savings. Many early adaptive arrays were based upon
LMS or Howells-Appelbaum adaptive processors [1]
which offered adaptive performance at relatively low
cost and complexity. Such techniques often have prob-
lems with the amount of data required before the weight
vectors converge to their proper values. Faster converg-
ing algorithms have started becoming practical as digital
devices have matured. Sample matrix inversion BSSMIQ
adaptive algorithms are now considered practical an
are used for many applications when processing blocks
of data. However, the cost of SMI algorithms becomes
prohibitive as the array dimensionality grows. An exam-
ple of this is pulsed radar applications for which space-
time adaptive processing [2, 3] are often employed. This
family of adaptive algorithms uses both spatial and tem-
poral degrees of freedom to null clutter using the clut-
ter’s spatio-temporal correlation. The degree of freedom
requirement is now the product of the number of spa-
tial elements and the number of pulses used. Since the
computational requirements of an SMI-based processor
increase as the square of the degrees of freedom, this
can become prohibitive and limit the allowable size or
temporal extent of such a problem.

Sparse arrays have been proposed as a method of ob-
taining the same resolution as a longer array at a frac-
tion of the cost. However, the sidelobes of the result-
ing patterns were quite high, and the adaptive patterns
were vulnerable to aliased nulls in the presence of cer-
tain interference environments [4]. The latter point was
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due to aliasing because of subsampling the array aper-
ture. In [5], a similar sparse approach was employed
for constrained arrays. However, that technique used
a single sparse projection for the full array, and was
therefore subject to the same limitations (e.g., poor side-
lobes, vulnerability to certain interference scenarios due
to aliasing) as conventional sparse arrays.

Our algorithm [6] breaks down large adaptive array
processing tasks into many smaller, more manageable
adaptive problems. It is based on the concept of element
nulling. In principal, the ideal solution to an optimal
adaptive weight vector

w=R"lv (1)

for an N-element adaptive antenna array using a steer-
ing vector v and interference covariance matrix R can
be reformulated as simultaneously “whitening” each el-
ement using all other elements as auxiliary inputs. This
is similar to the sidelobe canceling approach of adap-
tive array processing [1]. Consider the element nulling
weight vector

wn =R7e, (2)

where e, is an N-element column vector consisting of a
one in the n-th position and zeros elsewhere,

exn=[0 .=~ 0 1 0 ... 0]%, (3)

Note that w, is simply the n-th column of R-!. The
overall weight vector in (1) is equivalent to

N
w= Z Wnty (4)
n=1

where v, is the n-th element of v. This approach is
obviously not as efficient as solving for the weight vec-
tor directly using (1). However, when the rank of the
interference is significantly less than N, each w, vector
can be formed using only a small subset of the N ele-
ments. We have called this new technique Sparse Net-
work Array Processing (SNAP) due to its use of sparsely
sampled subsets of elements which can be fed through
a network of small adaptive processors.

The sparse network approach is less susceptible to the
deficiencies common with sparse arrays since the sparse
network treats a fully populated array as N different
overlapping sparse arrays. The nulling performance of
each is maintained, but the sidelobe structure of each is
uncorrelated and therefore will not appreciably degrade
the overall sidelobe structure when considered together.

In [6], the sparse network approach was introduced
and a space-time clutter nulling example was presented.



In this paper, we re-examine the selection criterion for
forming the sparse nulling sets. In Section 2 we look at
the theory of sparse networks and examine how a priori
covariance information can be used to select the sparse
clement nulling sets. In Section 3, we show the im-
plementation of this algorithm including sparse element
selection.

2. THEORY

In this section we will address the theory behind the
sparse network algorithm. To aid in our discussion, we
will use pseudo-code notation to describe portions of
matrices. Given the m-length vector b and the n-length
vector c, the notation A(b,c) denotes the (m x n) sub-
matrix consisting of the intersection of the rows specified
by the elements of b and the columns specified by the
elements of c. Similarly, the notation a(b) describes
the m-element subvector consisting of the elements in a
described by the m elements in b. An asterisk ‘x’
in either the row or column position specifies all rows
or columns. The superscript ‘H’ denotes Hermitian or
complex transpose of a vector or matrix.

SNAP attempts to perform element whitening using
only a fraction of the remaining elements as auxiliary
elements [6]. Let us denote the subset of D elements
which will be used to null element n as the vector py,
consisting of the elements p,.g) through pa(D). Let
the element selection matrix E, be the matrix whose
columns are the unit vectors specified by the elements
in pg, such that

€pn(D) ] (5)

Given the full N-clement array data vector x with
covariance R, we can express the sparse subarray
vector as X, = Efx:x(p,;) and its covariance as
Rn = R(Pn, Pn). The element nulling vector using this

subarray is
Wa =R;'E,, (6)

where €, = Effe, = €n(Px). This can be applied to the
entire array by applying each element of W, to its ap-
propriate element in the full matrix, yielding the sparse
element weight vector!

En =] e,0)

Wa = EnWn = E,R'EXe,. (1)

Using the nulling matrix W=[w: -+ wy ]
and ?4),

N
w= Zw,.v“ = Wy, (8)
n=1
represents the final weight vector.

As a simple example, consider the N x N Toeplits co-
variance matrix R whose (%, j) entry is (4, §) = 0.90—9),
This matrix is full rank with no clear separation between
‘signal’ and ‘noise’ eigenvalues, so subspace processing
using dimensionality reduction is not possible [7]. How-
ever, the inverse of this R is tridiagonal (although not
Toeplitz). A perfect nulling matrix can be formed using
D = 3 auxiliary elements for each sparse weight vec-
tor. To null element n forl1 < n < N , the elements
(n—1,m,n + 1) are used to form Wy, whereas the first

! An alternative formulation for forming sparse weight vec-
tors is to solve R(x, Dn)Wa = €(Pn). For some covariance
structures, this sometimes yields better solutions at the ex-
pense of higher computational cost. Empirically, this is sel-
dom worth the extra cost.

three elements are used to null element n = 1 and the
last three elements are used to null element n = N.
Instead of the adaptive problem being on the order of
O(N?) operations, the sparse network problem only re-
quires NO(D®) = 27N operations, which demonstrates
the potential benefit of sparse network approaches for
certain covariance structures.

In order for the sparse network concept to work effi-
ciently, the sparse selection sets p, for all n should be
chosen a priori based upon the expected structure of the
covariance matrix. These pre-formed sparse element
sets will then be used by N adaptive processors. Select-
ing the sparse element sets is not a trivial matter. While
closed-form solution strategies do not exist, the follow-
ing sections explain several principles which can guide
an iterative search to find good (although not necessar-
ily optimal) sparse element sets. Each section looks at
the sparse nulling procedure at a progressively deeper
level, starting with individual element nulling and fin-
ishing with the overall system nulling performance.

2.1. Element-level SINR

This section outlines how to select the sparse element
set for each element independently of the remaining el-
ements. Each sparse weight vector is responsible for
nulling the interference for the element for which the
weight vector was formed. To judge the effectiveness of
this nulling, we can compute the signal to interference
plus noise ratio (SINR) §, for the sparse element weight
vector W, for the element weight vector e, as

wHE. [
n -n ~H —_l~ H
= =g——=—=6€, R ‘e, = wj e,, (9)

n — —
wiR,.w,

which is simply the diagonal element of R* correspond-
ing to element n. This provides some insight into which
clements to select to form the sparse element weight vec-
tor. Since the trace of R;? is simply Ef___l A7 ! where
A; is the i-th eigenvalue of R,, Sy is upper bounded by
A;‘tn. This implies that the auxiliary elements to null
element n must be chosen so that there is at least one
noise eigenvalue in the resultant sparse covariance R..
Ordinarily, this would imply that the number D of aux-
iliary elements used exceeds the number of significant
eigenvalues (e.g., the number of sources) present in the
original covariance matrix R. However, the structure of
the original covariance might allow significantly fewer
auxiliary elements.

This is only one facet of SINR, since the signal power
must be preserved. Little is gained if the interference
is nulled at the expense of severely degrading the signal
power. Therefore, we must consider the performance of
the sparse weight vector w, as a function of the steering
vector v(#), which is

su0) < [FEEEVOP _ wve?
'l( ) - W!{IRuWn - wr’nien ( )

since

wHRw, = wH (EfRE,.) Wa = wiEHe, = whe,.
(11)
This SINR can be integrated over the range © of steering
vector angles to find

wiv(6)? wIRowW,
S@ =/ %—%p(a)de: WZ—. (12)
® n < n n “n
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where
Re = [/e v(0)v(8) p(9)d0] . (13)

For the specific case of a linear array with steering vec-
tors distributed with spherical symmetry around the ar-
ray, Re =1 and

H <HYp -2~
WaWn _egR.e,
Se = whe., = "e—{!R;"é'..' (14)

The first form of this expression is the norm-squared
of W, over the value of the n-th element. The second
form shows that this is upper-bounded by the inverse of
the minimum eigenvalue of Rn, which again indicates
that the p, must be chosen to allow noise eigenvalues
in Ra. This also shows that e, must lie nearly in the
noise subspace for best nulling performance.

2.2. System-level SINR

This section explains the sparse element selection cri-
teria based on overall system performance. While the
selection of the set ps of auxiliary elements for nulling
element n is itself a difficult problem, it is not a suffi-
cient basis for forming all such sets to provide the best
system SINR when forming a full array nulling weight

vector w = E:;l Wntn. The interaction of each sparse

weight vector must be considered. The overall SINR
averaged over all steering vectors in the region © is

VH Hv 2
So = ./; \LT@VI?%P(”“ (15)

The search for the sparse network element selection sets
must ultimately provide the best response with this met-
ric in mind. From our experiments we have found the
following guidelines for selecting pa [6]

o The size of p, should exceed the largest jammer
rank expected in the system, so that noise eigen-
values are present in R.,..

o The sparse element selection p, for each element
should span nearly the same aperture as the full
array.

o The relative sparse clement spacings of pn should
differ for each sparse element to reduce vulnerabil-
ity to specific jammer scenarios.

o The set p, of sparse elements chosen for each ele-

ment should have as small an intersection with all
other sparse sets pm as possible.

These are utilized in the implementation section below.

3. IMPLEMENTATION

The sparse network approach has been successfully
demonstrated on a space-time adaptive array process-
ing (STAP) application for airborne clutter nulling [6].
This application has a distinctive covariance structure
which can easily be exploited.

Consider a patch of clutter on the ground at azimuth 8
(with 8 = 0 denoting broadside of the array). The spa-
tial steering vector to this patch can be written as

exp {j21r£,\’~ sin 0}
v(8) = : ., ()
exp {jzwffl sin 0}
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Figure 1. Sparse network implementation of for space-
time clutter nulling on an airborne radar platform

where z; is the position of the i-th element. Due to the
platform motion, this clutter patch will have a Doppler
frequency f4(f) = 3% sin 6 for platform velocity v. The
received vectors from M radar pulses can be concate-
nated into N M-element space-time vectors of the form

V(6e)=d(0)@v(8) 1)
where d(6) = [ ei?*/a(®) e?™M1:9) 1%, When
all clutter patches are considered, the resulting NM x
NM covariance matrix has been shown to be low
rank with the degrees of freedom on the order of the
(N + M) [3]. The covariance element corresponding to

the p-th element and the m-th pulse with the g-th ele-
ment and the n-th pulse is

r((m—-1)M+p,(n-1)M+q) = (18)
/ 26 exp {132 [(2y — 2) + 20(m — )l sin0} do

where p(@) is the power of the clutter patch at an-
gle 6. For narrow transmit beams, p(8) will be fo-
cused in agimuth and the above covariance will how very
strong symmetry along the line (z, — z4) — 20(m — n)
in space-time.

An example SNAP architecture for space-time adap-
tive processing is shown in Figure 1, which shows a two-
stage nulling procedure. The first stage is a sparse net-
work arrangement to null spatial interference such as
jamming. The jammer-whitened inputs to the space-
time clutter nulling stage are applied to sparse network
processors which perform clutter nulling. The sparse
element selection for clutter nulling takes place over
the two-dimensional element-pulse domain using other
sparse element-pulse selections to null each element-
pulse pair. The same element-pulse selection scheme
may be used on other pulses by treating the resulting
sparse network as a two-dimensional temporal filter. Af-
ter applying this filter, we will produce clutter-free el-
cment data on a pulse by pulse basis which can then
undergo spatial beamforming followed by Doppler pro-
cessing.

To prove the usefulness of SNAP for this application,
we have simulated its performance with a 32-element
uniform linear array using 32 radar pulses and a plat-
form speed and pulse repetition frequency such that the
clutter has Doppler ambiguity (i.e., several azimuths
have the same Doppler frequency). The angle of the
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Table 1. Computation count comparison (in megaflops)

for SNAP versus PRI-staggered Post-Doppler
OPEHRATION: ]| PRI-Stag. | SNA
Doppler Proc. 116
Adapt: 226 25
Apply: 25 67
Doppler Proc. 1
TOTAL 367 93

array is offset 10° from the ground velocity vector. This
causes the frontlobe clutter at a given Doppler frequency
to have a different azimuth from the backlobe clutter at
the same Doppler frequency, resulting in a splitting of
the clutter line. We have included jammers at —25° and
15°. As shown in (18), the clutter covariance matrix
exhibits a strong banded structure due strictly to the
geometry of the airborne radar and its ground velocity,
which changes slowly with the flight scenario. “There-
fore, we may assume a deterministic model for the clut-
ter statistics from which to choose the sparse element-
pulse pair selection for element clutter nulling. Devia-
tion from these statistics with real data is compensated
by the adaptive weight formation for each element-pulse
selection.

We designed an adaptive sparse network processor
which used seven pulses centered around the pulse to be
nulled. This allowed 7N = 238 possible degrees of free-
dom. Sparse network selection sets p, employing only
32 degrees of freedom to null each element were cho-
sen using a simulated annealing algorithm with a finite-
time cooling schedule [8] to select the sparse selection
sets. The sparse element selection criterion provided
the best system-level SINR for steering vectors in the
interval |0] < 20° using an ideal estimate of the clutter
covariance matrix. For our simulation, we formed each
adaptive sparse element nulling weight vector using only
64 sample vectors (twice the 32 sparse degrees of free-
dom) with the same distribution as our NM = 1024 di-
mensional covariance matrix. The results of this sparse
network application are shown in Figure 2, which shows
the SINR loss versus azimuth and Doppler compared to
a scenario with no jamming or clutter. The diagonal
lines sweeping through the figure are due to front lobe
and backlobe clutter, since the array was crabbed 10°,
The vertical lines at —25° and 15° are due to jammers

at those locations. The jammers affect all Doppler fre-
quencies since they are uncorrelated from pulse to pulse.

In the angular sector |9 < 45°, this SINR performance
is nearly identical to the optimal performance. We can
compare this algorithm to a represntative space-time ar-
chitecture called PRI-staggered Post-Doppler [3], which
yields similar SINR performance. For a 1024 range gate
sample set, SNAP saves a factor of four in overall com-
putations and a factor of ten in adaptive computations,
as shown in Table 1. The computational breakdown
includes Doppler processing (performed on all data for
PRI-staggered Post-Doppler and only on the adapted
beamformer output for SNAP), adaptation, and weight
application.

At extreme angles (|| > 45°), the performance in
Figure 2 is noticeably degraded with extraneous nulls
appearing between the two clutter nulls. This occurs
because these areas have appreciably different a pri-
ori clutter statistics than the area |6| < 20° for which
the sparse element selection was chosen. When the
sparse clement selection was chosen for these sectors,
we achieved nearly optimal performance there as well.

Normalized Doppler

-50 o 50
Azimuth (deg)

20 -15 -10 -5 0
SINR Loss (dB)

Figure 2. SINR loss for space-time nulling of a 32-
element, 32-pulse radar

4. CONCLUSION

In this paper we have demonstrated the Sparse Net-
work Array Processing (SNAP) algorithm which ex-
ploits a priori covariance structure to yield near optimal
performance with significant computational savings.
The algorithm nulls the interference on an element-by-
element basis using only a fraction of the remaining ele-
ments as auxiliary inputs. The architecture is modular,
easily scalable, and highly parallel. We have success-
fully demonstrated the algorithm for space-time adap-
tive jamming and clutter cancellation for an airborne
radar application. While more research is still required
to refine the sparse element selection criterion, the al-
gorithm shows great potential for highly structured co-
variance applications.
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