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ABSTRACT

Consider the problem of finding a lower bound on the
signal to noise ratio (SNR) at which any unbiased 2-D
harmonic estimation scheme may resolve closely spaced
parameters. In particular, consider the Cramer-Rao
bounds associated with the parameters. If the param-
eter estimates are unbiased and normally distributed,
the bounds give the smallest possible ellipsoid about
each of the parameters which contains a given amount
of probability mass. These ellipsoids increase in size
with decreasing SNR. This paper presents a method for
determining the largest SNR at which any two of the el-
lipsoids touch. This is deemed the resolution threshold
SNR.

1. THE 2-D MODEL

Consider 2-D data of the form y(m,n), where 0 < m <
M —-1,and 0 <n < N —1. Suppose the data have a
2-D modal structure,

P
y(m,n) = > s AP +w(m,n), (1)
t=1

where p is the number of modes and w(m,n) is com-
plex, additive white Gaussian noise of variance 2. Each
2-D mode is parameterized by the real parameter vec-
tor

0; £ [Re(\i), Im(A;), Re(y), Im(m)]7,  (2)

where each A; is a complex modal parameter for the
first dimension, and each +;, a complex modal param-
eter for the second dimension. The complex number s;
denotes the amplitude of the i*# 2-D modal signal.
Recent research into parametric techniques for iden-
tifying the parameters of this above model has been
extensive. At high SNRs these techniques are prefer-
able to classical nonparametric spectrum estimators in
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that they are high-resolution. That is, they offer the
possibility of resolving parameters whose spacings are
smaller than the Rayleigh limit. However, this is pos-
sible only when the variances of the parameter esti-
mates are small in comparison to the parameter spac-
ings. Since the variances of the estimates increase with
decreasing SNR, one may define a resolution threshold
noise level. This is the noise level at which the variances
of the estimates are deemed to be commensurate with
parameter spacings. For one-dimensional parameter es-
timation, definitions of resolvability closely related to
the above were proposed by Oh and Kashyap (1] and
Yau and Bresler {2].

2. A RESOLUTION METRIC

To define resolution for the 2-D parameter estimation
problem, one may rely on the classical notion of a spec-
trum analysis technique resolving two closely spaced
lines when the estimated spectrum exhibits two distinct
peaks. In the parametric case, parameters may be con-
sidered resolvable when a scatter plot of the parame-
ters yields distinct clusters of estimates. Figure 1 shows
such a scatter plot for scenariowith N =M =5,p=2,
8 = [1 I]T, A= [ejO.l'fr e—j0.21r]T’ v = [ej0.21r ejO.S'rr]T’
and SNR = 15dB. The method used to estimate the
parameters is described in [3].

The purpose of this paper is to address questions
about the resolution of 2-D parameters. To accomplish
this task, each parameter estimate is assumed to be
unbiased and normally distributed. Specifically, sup-
pose that each estimate is distributed as 8y : N{6, Ck],
where C, € Rd"d; That is, suppose that the density
function for each @y is

FBr) = (21)" % det(Cy)"? (3)

1. N
exp (—5(9k - 0:)7C Ok - 9k)> ,

. .. A
where the covariance matrix is of the form Cy = ¢2Ry,
o? represents the noise variance, and the estimates are
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Figure 1: Scatter Plot with CRB Ellipses Containing
90% Probability Mass

unbiased. (The assumption of unbiasedness is justified
for many techniques {3, 4, 5]).

' The level curves associated with the densities of the

estimates are the ellipsoids

£ 2{0:(6-0,)TC1(0-6:) <2} 1<k<p (4)

where 72 is some nonnegative constant. Here r is cho-
sen so that each ellipsoid encloses some arbitrarily large
fraction of the probability mass. Consider plotting the
ellipsoids associated with each of the parameters in a
common coordinate system.

Of course, for unbiased estimates, the covariance
matrices are bounded by the 2-D Cramer-Rao bound
(CRB) matrices: Ry > Qi, where 02Q; is the CRB
matrix for the parameter ;. That is, the probability
mass enclosed by the CRB ellipsoids is a subset of the
mass enclosed by the ellipsoids of any unbiased estima-
tor. The smallest signal to noise ratio (SNR) at which
the ellipsoids corresponding to the CRB’s are disjoint
is deemed the resolution threshold SNR. Such a thresh-
old may be of use in answering questions about the
applicability of parametric estimators in low SNR envi-
ronments. In particular, if the SNR is below threshold,
parametric methods will not necessarily offer resolution
superior to nonparametric approaches.

Figure 1 shows the 90% error ellipses obtained using
the CR bounds of [6]. Note that since they are disjoint,
it is likely that 15 dB is above the resolution threshold.
However, one cannot be certain since this figure treats
only two of four possible real parameters and does so
in a polar coordinate system. While a polar coordinate
system is convenient for representing the 2-D modes, it

is the wrong topological space in which to phrase the
resolution problem (because, for instance, the phase an-
gles are periodic). For this reason this paper considers
ounly the rectangular representation of equation 2.

3. FINDING THE THRESHOLD SNR

An equivalent definition for the resolution threshold
is the smallest noise level at which any two ellipsoids
corresponding to the CR bounds become tangent. For-
mally, the problem of finding the resolution threshold
is as follows:

Problem 1 Consider p unbiased estimators {ék}zzl
of some 4-dimensional, real parameters {Ox}%_,. Sup-
pose that each O}, is normally distributed with CRB ma-
trir 02Qy. Suppose further that 0, # 0, if k # L.
Find the minimum value of a° for which there exists a
@ € R, and integers 1 < k,l < p with k # 1, such that

0-6:)TQ; (0 -0;) < o, (5)
0-6)TQ 1 (0-6) < ot (6)

Here r is chosen so that each ellipsoid in {6 : (8 -
0,)T(0%Qn)"2(6 — 8,,) < r?}2_, encloses some given
amount of probability mass, P. Thus the problem is
to find the minimum value of 02 such that at least two

ellipsoids are tangent with disjoint interiors

In [7, 8], the problem of finding the threshold SNR
in spaces of arbitrary dimension is explored. The fol-
lowing provides the key theorem behind this method.

Define the two ellipsoids associated with the param-
eters @; and 0; as

E;
E;

{z:(z-0,)7Q; (x - 86;) <o}, (7)
{y:(y-6;,)7Q; (y — 6,) <o’r*}. (8)

As QF ! and Qj'l are positive definite by assumption,
there exists a nonsingular matrix 7 € R¥*¢ such that

e e

TTQ'T=D,, TTQ;'T=1, (9)

where D, = diag(B, Ba, ..., Ba) is a positive definite
matrix. T is said to simultaneously diagonalize Q!
and Qj‘l [9]. Let

EET Nz -6), §,2T726;-6;). (10)
The following theorem then gives the key result.

Theorem 1 Sufficient conditions for the ellipsoids E;
and E; to be tangent with disjoint interiors are

T, = (I_aDz)_lg07 (11)
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Figure 2: Threshold SNR versus the Distance Between
the 2-D Modes

o’r? = #TD,z., (12)
o*r? = (& = §0)T (& — o), (13)
a < 0 (14)

It is shown that the solution exists and is unique. The
solution for the threshold noise level is then found as

2 _ 92 D.(I - aD;)"?%y,
O'T = T2

(15)

where « is the unique negative zero of the rational func-
tion

7 Do(I — aD;) "%y — o3 DI — aD,) " %j,. (16)

A fast algorithm for computing the coefficients of the
numerator polynomial of this function is also given
in (7, 8]. Further an algorithm which, given the co-
variance matrices for each of the multidimensional pa-
rameters, provides the threshold SNR is presented.

4. EXAMPLES

Of particular interest is the SNR threshold as a func-
tion of the distance between two closely spaced 2-D
modes. For the earlier example such a plot is given by
Figure 2. In this figure the second mode varies as

R R g P
T2 mn Y2—N
with o € (0, 1.5] and the distance between modes mea-

sured as d 2 A2 = A1 A2 —m]|lz- This plot shows that
the SNR threshold increases rapidly with decreasing
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Figure 3: 2-D Slices of CRB Ellipses at the Threshold
SNR of 9.13 dB

parameter spacing. Further, it shows that the thresh-
old is not as sensitive to the choice of P as one might
suspect. Next, notice that for our earlier example (for
which @ = 1) that the distance between the modes is
approximately 0.96 and the SNR threshold is 9.13 dB
for the case P = 0.9. Finally, to show that the el-
lipsoids are indeed tangent at the threshold SNR see
Figure 3. This figure shows a 2-D slice of the 4-D el-
lipsoids in the plane containing their centers and their
point of tangency.

The next step is to observe the mean squared er-
ror (MSE) of a parametric technique and see if it ex-
hibits threshold behavior at the computed SNR thresh-
old. Toward this end, the sample MSE based on 100
different noise realizations was computed at many dif-
ferent SNRs. This was done for each of two estimation
methods. The first was the parametric technique of (3]
(2D IQML), and the second, a simple nonparametric
technique. This second technique merely estimated X
and v by finding the 2 bins of greatest modulus in the
2-D discrete Fourier transform (DFT). Note that for
the case of interest the parameters of 4 lie in a single
Fourier bin. Figures 4 and 5 show the MSEs for each
of the phases of the parameters in A and . They also
provide the CRBs for each of parameters.

Notice that the parametric technique exhibits thresh-
old behavior at an SNR above the predicted threshold.
This is precisely as expected since the threshold was
found using ellipsoids corresponding to the CRBs—the

2038



MSE of angle(lambda)

40
% o ang(lam(1)) by 20 QML .
F e
X ang(lam(2)) by 20 IOML o
30+ | + ang(tam(1)) by DFT ‘,,/R
*  ang(lam(2)) by DFT el
25r Pig
-~ = CRB for ang(lam(1)) PR
@ 2k | CRB for ang(lam(2)) //r
g - SNR Threshold . Pid a
‘g‘ 15 —~
- ,/’
' 10p PR P IR + +
P -]
[
- X
5r P * x x| 8 x x » x
g *
,/ o ]
or Pt o ¥
L~ o
i SR
53 » H o Q 2 X
X X X x
1 . . . N . L
-010 -5 0 5 10 15 20 25 30
SNR (dB)

Figure 4: Threshold Behavior of Parametric and Non-
parametric Techniques in Estimating Z()

smallest ellipsoids associated with any unbiased estima-
tor. Further, notice that the DFT based technique pro-
vides performance comparable (or better) than that of
the parametric technique below threshold (of course the
performance of the DFT method will depend on where
the actual parameters lie with respect to the bins).
Therefore, as the DFT is much more efficient compu-
tationally, it should be the preferred method when the
SNR is below threshold.

5. CONCLUSION

In summary, algorithm independent resolution thresh-
olds bound the SNR at which resolution is possible for
an efficient estimator in a particular model. Further
they allow us to answer questions concerning the SNRs
at which an efficient parametric estimator achieves the

Rayleigh limit.

And finally, they help us to answer

questions about when parametric techniques should be
preferred over nonparametric techniques such as the
FFT.
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