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ABSTRACT

Optimum mean square estimation of a random variable y in
terms of an observation vector x is realized by the conditional
expectation value. When x and y are real and jointly normal
this expectation is linear in x. This is no longer the case
when x and y are complex and jointly normal and the expec-
tation is linear in x and in its complex conjugate x*, which
introduces a widely linear procedure. The purpose of this
paper is to study the properties of widely linear systems for
estimation and prediction. The structure of such systems is
calculated and the gain in performance is analyzed. The
results are applied to autoregressive signals, which intro-
duces widely linear prediction.

I. INTRODUCTION

Mean square estimation (MSE) is one of the most fundamen-
tal techniques of Statistical Signal Processing [1]. The basic
problem can be stated as follows: let y be a scalar random
variable to be estimated (estimandum) in terms of an obser-
vation which is a random vector x. The estimate y that
minimizes the MS error is then the conditional expectation
value E[y | x] [2]. This result is usually given when x and
y are real. However it remains valid when these quantities
are complex valued [3]. If x and y are zero-mean, real, and
jointly normal, the estimate § becomes linear and can be
expressed as h”x. This is no longer true when x and y are
complex and jointly normal, and it appears that the condi-
tional expectation takes the form

y=ux + v x*, (1.1)

where u and v are complex vectors, H means the complex
conjugation and transposition (Hermitian transposition), and
x* is the complex conjugate of x. In fact the conditional
expectation E[y | x] can be written as E[y,|x,, x,] +
JE[y2|x,, x,], where y,, y,, x, and X, are the real and
imaginary parts of y and X. As a consequence E[y | x] is
linear both in x; and x, with complex coefficients. Writing
these vectors in terms of x and x*, E[y | x] takes the form
(L.1).

It is clear that ¥ given by (1.1) is no longer a linear func-
tion of x. However the moment of order k of § is explicitly
defined from the moments of the same order of x and x*.
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This is a reason why  is called widely linear, or linear in the
wide sense. The purpose of this paper is to study the struc-
ture and properties of widely linear MSE, or WLMSE. It is
obvious that WLMSE appears only when complex data are
used and becomes again strictly linear in the real case.
However the use of complex data is very common in many
fields of Signal Processing such as spectral analysis and
antenna or beam forming design {4].

II. WIDELY LINEAR MSE

The problem is then to find the vectors u and v in such a way
that (1.1) gives the minimum mean square error £ [| y -
y | ]. For this purpose the first point to note is that the set
of scalar complex random variables z( @) in the form

zZ(w) = a”x(w) + b x*(w), 2.1

where a and b belong to €", constitutes a linear space. It
becomes a Hilbert subspace with the scalar product <z, z'>
=E(z*z"). As aresult the WLMSE 7 is the projection of y
onto this subspace and is characterized by the orthogonality
principle

-3 lx; y-3)dLx. @2

The symbol 1l means that all the components of x or x* are
orthogonal to y — ¥ with the previous scalar product. Asa
consequence, these equations can be written in terms of
expectations, which yields

E(§*x) = E(y*x) (2.3)
E(3*x%) = E(y*x"). 24)

Replacing § by (1.1) gives
Tu+Cv=r 2.5)
C*u +T*y =5*, (2.6)

where

F=E[xx"] ; C=E[xx"] 2.7
r=E[y*x] ; s=E[yx]. (2.8)

The solution of (2.7) and (2.8) can be expressed as
u=[-Cr'"*C*I"'[r-CIL'*s*] (2.9
v=[T* -C*T'C]'[s* - C*T'r]. (2.10)
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The corresponding mean square error is also deduced
from the projection theorem by

e’ =E[ly*]1- E[ |5]?] (2.11)
By using (1.1) and the equations (2.5) and (2.6), we obtain
e2=E[|y|*1-@"r + v¥s*). (2.12)

This error is smaller than €2 , the error that is obtained
with a strictly LMSE and equal to E[ | y |*] = r*T""'r. The
advantage of the wide sense linear procedure over the strict
sense one is characterized by the quantity §£? = g2 - g?
which can be expressed as

& = [s* - C T 'r) [ - C*T'CI'[s* - C*T"'r), (2.13)

This quantity is non-negative. In fact the matrix [I"* - C*
" 'C] is positive definite if x is not real. and consequently
&€= 0 is possible only whens* — C*I""'r = 0.

At this step it is worth pointing out that all the previous
calculations could be realized by using only real quantities.
For this purpose it suffices to write (1.1) in the form

3 =hlx, +hlx,, (2.14)

where X, and x, are the real and imaginary parts of x, and to
split this equation in two real equations because h, and h, are
complex and to calculate the four vectors h appearing in
those equations. However by doing so the compact expres-
sion of the complex quantity y is less obvious and (2.13)
takes a much more complex form. Furthermore the compari-
son with the strictly linear procedure characterized by v = 0
is less obvious with real quantities than with (1.1). Finally
in the strictly linear case, nobody has the idea of
transforming the complex Wiener-Hopf equation T'u = ¢ in
a set of two real equations.

1. EXAMPLES

3.1 Jointly Circular Case

This situation is characterized by
C=0 ; s=0. 3.1

This assumption is well-known in the normal case (see
{2], p. 118) and is sometimes used in the definition of com-
plex normal random vectors. Furthermore one can show that
under some conditions the Fourier components of stationary
signals are complex circular random variables. The analytic
signal of a real stationary signal is also second-order circular.
The term of circularity comes from the fact that if (3.1)
holds, the random vectors x and x exp(jo) have the same
second-order properties for any «. Note that (3.1)
characterizes only second-order circularity, and the concept
can be extended when using higher-order statistics. Note

also that (3.1) means a joint circularity and is then an
assumption on X and y.

It immediately results from (2.10) that (3.1) implies v =
0. Similarly (2.9) givesu =T"'r. Thus the assumption of
joint circularity implies that the WLMSE (1.1) becomes
strictly linear. It is also clear that (2.13) gives §¢? = 0, and
the conclusion is that, in the case of a joint circularity, a
strictly linear system is sufficient to reach the best perfor-
mance. This is one of the arguments justifying the interest of
circularity.

3.2. Circular Observation

Suppdse now that the second assumption (3.1) is deleted.
This means that circularity is only valid for the observation
and is characterized by C = 0, while no specific assumption
is introduced for the estimandum y. In this case (2.9) and
(2.10) are greatly simplified and become

u=C"'r ; v*=TI"s. (3.2)

This means that the term u”x in (1.1) is the same as the
one obtained when using strictly linear estimation. This fact
can be explained by noting that the circularity assumption
implies that the vectors x and x* are uncorrelated. Thus the
Hilbert subspaces generated by x and x* are orthogonal and
taking into account x* does not change the term coming from
x only. This also explains the simplification of (2.13) that
becomes

Se’=s"T"'s. (3.3)

Thus a non-zero vector s necessarily implies an increment of
the performance of estimation when using WLMSE instead
of LMSE.

3.3. Case of a Real Estimandum y

The estimation of a real quantity from complex data appears
in many situations as, for example, when the observation
comes from Fourier components of a real signal some real
parameters of which have to be estimated. Suppose then that
¥ is real, x still being complex. This obviously implies that r
= s in (2.8). It results from (2.9) and (2.10) thatu = v*
and consequently

y =2Re(ux). (3.4)
Similarly the estimation error takes the form
e’ =E(y*)-2Re(ur) (3.5)

The main property of the estimate (3.4) is that it is real, while
there is no reason for the strictly linear estimate to be real,
which is not convenient when estimating a real quantity.

The advantage of WLMSE with respect to LMSE is even
more clear when the observation x is circular. In fact, as
seen previously in subsection 3.2, the vector u is the same as
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the one that must be used to realize the MSE of y with the
strictly linear method. Thus, by using this vector, the two
estimators become

y. =u’x (3.6)
Ywe = 2Re(u”x) (3.7
and the corresponding errors are
€l = E(y*) —ur 3.8)
€4, = E(y*) - 2u”r. (3.9)

Note that the quantity u”r is positive because it is equal to
u”T u and I is a positive definite matrix. In conclusion, the
wide sense linear estimator (3.7) provides a real estimate and
a decrease of the error that is twice as great as the strictly lin-
ear estimate, which in general is complex. It is also clear that
e =u”r.

These results can especially be applied to the classical
non-causal Wiener filtering. Let x(¢) and y(¢) be two jointly
stationary continuous-time signals. Suppose further that y(¢)
is real and that x(z) is complex and second-order circular,
which means that E[x(£)x(¢t = 7)] = 0. This is, for
example, the case of the analytical signal of a real stationary
signal (see [2], p. 230). The strictly linear estimate of y(z)
can be expressed as (see [2], p. 450)

3, (1) = _[ h(t- 6) x(6)d8,  (3.10)
and %(t) is determined by the orthogonality equation
_[ h(O)7.(T - 8)d8 = 7,,(7), (3.11)

where 7,(7) = E[x()x*(t - 7)] and y,,.(7) =
E[y(t)x*(t — 7)]. A Fourier transformation yields the
frequency response

Hv) = [[,(W]'T,(v), (3.12)
where I, (v) is the power spectrum of x(¢) and T', , (V) the
Fourier transform of y,, (7). The mean square error is then

&=[ ol (nmnm- [T Ta, G613

On the other hand the wide sense LMSE of y(#) is, as in
(3.7),
Fwe (8) = 2y,(8), (3.14)

where y,(f) is the real part of y,(f) given by (3.10).
However, as x(r) is circular we have E[y2 ()] = 0, and
then

E[|3. 0|’ 1 =Eb 0] + Eb 2 0] = 2Ely 1 0], (3.15)

where y,(¢) is the imaginary part ofﬁb(t). As a result we
have E($%, ()] = 2E[|y. () |*] and (3.13) becomes

&, = j [T [T, =2 Tuw | 1dv. (3.16)

This shows the advantage of the wide sense linear procedure
over the strictly linear one.

The conclusion is quite general: when the complex data
are not jointly circular, the classical LMSE is not the best
procedure of estimation that only uses the second order prop-
erties of the signals. This conclusion confirms and extends
the results of [5]

3.4. Singular Estimation

The estimation is singular when the mean square error 1s
zero. If the wide sense linear mean square error (2.12) is
zero, the estimandum y belongs to the Hilbert subspace
defined by (2.1) and can then be written as

y =a"x + b x*. 3.17)

It is now interesting to study the behavior of the strictly
LMSE when (3.17) holds, or in the case of singular
WLMSE. Note first that if b = 0, (3.17) becomes strictly
linear. In this case singular estimation appears equally well
with the two forms of linear procedures.

Let us now investigate the completely opposite situation.
It corresponds to the case where the strictly linear procedure
provides a zero estimation. This means that the mean square
error €7 is equal to E[1y*]. This situation appears when r
defined by (2.8) is zero, which means that the estimandum y
and the observation x are uncorrelated. By replacing y given
by (3.17) in (2.8) we obtain

r=Ta + Ch. (3.18)

As T 1s positive definite, the condition r = 0 is equivalent

to .
a=-T"'Cb. (3.19)

Then if C # 0, or if x is not circular, it is possible to
associate to any non-zero vector b another non-zero vector a
given by (3.19) and such that y given by (3.17) is uncorre-
lated with x. This implies a zero LMSE. On the other hand,
because of (3.17), ¥ given by (1.1) is equal to y and the
mean square error is zero, which means singular WLMSE.
We then have zero estimation with the strictly linear proce-
dure and perfect estimation with the wide sense linear proce-
dure.

IV. AUTOREGRESSIVE SIGNALS
AND PREDICTION

A complex autoregressive (AR) signal is defined by the dif-
ference equation

z[k] = a"Z[k] + w(k], 4.1
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where a is the (generally complex) regression vector, Z{k]
the past vector with components z[k — i], 1 < i < p, and
w[k] a complex white noise. The second order properties of
this signal are specified by its correlation and relation func-
tions defined by

Y.lnl =E{z[k}z"[k —n]} 4.2)

c.[nl=E{zlk]lz[k - nl}. 4.3)

The whiteness assumption means that the spectrum is flat,
which gives ¥, [n] = 6} §[n]. On the other hand no spe-
cific property is assigned to c,[n] by the whiteness.
However we shall say, by extension, that w(k] is doubly
white if ¢, [n] = ¢,, 8 [n], where c,, is a complex parameter.
Finally w[k] is circular if ¢,,[n] = 0. As z[k] is obtained
from w[k] by a linear filter defined by (4.1), it is easy, a
least in principle, to calculate its correlation and relation
functions in terms of a, o2 and c[n].

However the most interesting problem is the identification
problem, or the determination of a, 2 and c,, [n] in terms of
Y.[n]and ¢, [n]. For classical AR signals, this is realized
by using the normal equations.

4.1. Extended Normal Equations

It results from the causality of the filter that Z[k] and w(k]
are uncorrelated. As a consequence we deduce from (4.1)
that

la=c; ol=o0! -a"Ta (4.4)

where T is the covariance matrix of Z, defined as in (2.7)
and ¢ the vector E{z*[k]Z{k]}. This means that the
regression vector a and the variance ¢} are determined by
standard equations and without taking into consideration the
relation function ¢, [k]. In other words it is not necessary at
all to assume that ¢,, [n] = 0 to calculate a and o2 from the
standard normal equations.

In order to calculate ¢, [n], we start from (4.1) which
gives w[k] in terms of x[k] and its past. Introducing the
quantities

¢, 2 E{z[k]Z[k -n1} ;C, & E{Z[K1Z7[k -n]} (4.5)
we deduce
¢, [n] =c,[n] - a”(c,, +cC_,) + a”C,,a* 4.6)

This shows that the relation function of w([ k] can be deduced
trom that of z[k]. In the case of a doubly white noise, we
obtains simply

¢w = c,[0] —afCa* 4.7)

where C is the symmetric matrix C,.

4.2. Prediction

In many problems it is assumed that w{k] is circular, or that
cw[n] = 0 (see [4], p. 55). In this case z[k] and Z[k] are
also jointly circular and we can apply the results of Section
3.1. As a consequence the best MS prediction of z[k] in
terms of all its past is a”Z [k]. This is the classical property
of AR signals, valid in the real case and also in the complex
circular case.

The converse is not true, and linear prediction does not
imply circularity. In fact the result remains valid if, for
example, w[k] is no longer circular but doubly white. This
results from the fact that the innovation z[k] = z[k] —
aZ[k] is orthogonal to Z[ k] and to Z*[k]. We have then
an example of non circular signal for which strictly LMSE is
equivalent to WLSME. This means that the vector appearing
in the quadratic form (2.13) is zero, which can easily be ver-
ified for an AR signal obtained from a doubly white signal.

If now the driving noise w (k] is no longer doubly white,
the best prediction of z[] in terms of its finite past is no
longer a"Z[k] but takes the form (1.1), and is then widely
linear. Some examples of such a situation will be analyzed
elsewhere.

V. CONCLUSION

The results of this paper can be summarized as follows.
The estimation of a complex quantity in terms of a complex
observation by using only second order statistics requires in
general the use of WL systems. The structure of such sys-
tems has been calculated and also the gain in performance
with respect to linear systems. Some examples of applica-

. tions have been presented and it especially appears that,

when the circularity assumption is introduced, WLMSE
becomes linear. Finally all these results have been applied to
some prediction problems.
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