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ABSTRACT

Recently we presented a parameter estimation algorithm
called the Binary Series Estimation Algorithm (BSEA) for
Gaussian auto-regressive (AR} time series given 1-bit quan-
tized noisy measurements. In this paper we carry out an
asymptotic analysis of the BSEA for Gaussian AR mod-
els. In particular, from a central limit theorem we obtain
expressions for the asymptotic covariances of the parame-
ter estimates. From this we: (1) Present an algorithm for
estimating the order of an AR series from one-bit quan-
tized measurements. (2) Theoretically justify why BSEA
can yield better estimates than the Yule-Walker methods
in some cases. :

1. INTRODUCTION AND PROBLEM
FORMULATION

Recently in [4], we presented a parameter estimation algo-
rithm called the Binary Series Estimation Algorithm (BSEA)
for Gaussian auto-regressive (AR) time series given 1-bit
quantized noisy measurements. Of particular interest were
the surprising computer simulation results which showed
that for certain AR series in multiplicative noise, the BSEA
based on 1-bit quantized measurements yielded significantly
better estimates than Yule-Walker methods that are based
on the unquantized measurements.

In this paper we carry out an asymptotic analysis of
the BSEA for Gaussian AR models. Based on the result-
ing asymptotic parameter variances, we address important
issues such as model order estimation and theoretically ex-
plaining the surprising simulation results in [4].

Signal Model: Let {S;, t = 0,%1,...} be a zero mean
discrete-time stationary auto-regressive (AR) process

l
S = Za; Se—i + Zt, Zy ~ white N(0,0’ﬁ) (1)
i=1

where the roots of z' —a; 2~ —...—a; = 0 lie inside the unit

circle. Assume that the observations X are obtained by
sending this AR process through a randomly time-varying
observation coefficient ¢ + W; and then quantizing:

Y = (c+ Wi)S:, X.=sgn[Vt] (2)
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where W; ~ white N(0,0%), ¢ > 0 and sgn[Yi] = 1 if
Y: > 0 and 0 otherwise. Assume Z; and W, are mutually
independent processes and o, is known.
Contributions: Estimating a = (e1...a;)’ for a fixed or-
der I based on z1,...,2, using BSEA was studied in [4].
Our main contributions in this paper are:

Given the n-point realization z1,...,z, of the binary
series {X;} defined in (2):
1. Compute the asymptotic parameter estimate variance
E{(a — a)(a — &)’} where & denotes the BSEA parameter
estimate. Because direct computation of this variance in-
volves fourth order cumulants and so is infeasible, we use a
Markovian approximation which results in a computable ex-
pression. A similar Markovian approximation is suggested
in [2]. However, the Markovian approximation we use turns
out to be a non-trivial generalization of that in [2].
2. Estimate the AR model order I. Based on the parameter
variances we design a statistical test for selecting the model
order. Our order estimation algorithm is in the same spirit
as that in [3] where an order estimation of ARMA models
based on unquantized observations is studied.
3. Compute the asymptotic parameter variance of the Mod-
ified Yule Walker (MYW) scheme which uses the unquan-
tized observations (y1,...,yn) of the process {Y;} to esti-
mate a. The MYW scheme was proposed in [4] as a natural
extension of the standard Yule Walker scheme to deal with
the multiplicative noise. We then compare the asymptotic
parameter variances of the BSEA (Objective 1) and MYW.
This allows us to explain why in some cases BSEA can yield
better estimates-than the MYW.
Related Works: For an excellent detailed exposition of
estimation algorithms for time-series based on zero cross-
ings, see [2] and the references therein. Chapter 6,7 in [1]
and Chapter 6 in [2] present a useful starting point for our
analysis.

2. 1-BIT QUANTIZATION OF Yr

Denote the correlation function of the stationary AR pro-
cess {S:} given in (1) as

ps(i) = E{S: Set:}/E{ST}, ps = (ps(1)...ps(1)) (3)

For:=1,2,..., define “transition probabilities” of X, as

AEPX:=1Ximi=1)=P(X, = 0|Xeei = 0)  (4)
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Theorem 1 Assume i > 0. Then the transition probabili-
ties A; definedin (4) for the binary time-series {X.} (2) are
related to the correlation ps(i) defined in (8) of AR process
{Se} (1) as follows:

1 Ke .1 .
Ai = 5 +sin ps(d) (5)

where with ®(.) denoting the normalized Gaussian distribu-
tion, K. = (2 F. — 1)%, P(W: <c)=8(c/ow).

The above theorem explicitly gives a relation between
the transition probabilities A; of the binary series X and
the correlation ps of the AR series S;. We now show how
to compute these transition probabilities given the binary
sequence realization z1,...,%Zn.

Definition 1 Let D.(i), i > 0, be the indicator function for
the zero crossings spaced by 1 time instants of the realization

Y1,--.,Yn of the process {Y:}: That is given a realization
T1,...,Zn of the binary time series {X:}:
N 1 1f T: ;é T

D:(3) = { 0  otherwise (6)

Let D(1) denote the number of zero crossings spaced by i
time instants: D(i) =) ., D:(3). Let D = (D(1)...

Theorem 2 The mazimum likelihood estimate of the tran-
sition probability A; (4), i > 0, based on the n-point binary
time series sample path z1,...,Zn of the process {X:} (1)
is \i = 1~ D(i)/n

3. BINARY SERIES ESTIMATION
ALGORITHM

Let g denote the estimated correlation based on the binary
series realization zi1,...,Zn

s = (ps(1) ... ps(1))', ps(i) = sin —— X (ki - —) (M
The following Binary Series Estimation (BSEA) algo-

rithm was proposed in [4] for estimating the AR parameters
a based on the observed binary series zi,...,Zyn:

a=R" 7 (8)

where R is the Toeplitz symmetric matrix with first row
[1 ps(1) ... ps(l)] Mean-square consistency of BSEA is
proved in [4]. Let (1, 7, k) denote the 4-th order cumulant
function of the binary series X; and let vx(i) = E{(X; —
1/2}(Xe+i — 1/2)} denote the covariance of X,.

We now present a central limit theorem for the asymp-
totic normality of the zero crossings and hence the esti-
mated covariances of the AR process {S;} based on the ob-
servations {X.}. Our main contribution is to then develop
a computable expression for the asymptotic variance.

Theorem 3 The vector of zero-crossings D in Definition
1 satisfies the following Central Limit Theorem:

n~'/2(D - E{D}) = N(0, ) (9)

Dy

T= (mo m) =

where = denotes convergence in distribution and pu denotes
the I x | matriz with elements

i -2

Biy = Z % [sin"1

k=—o00

ps(k +i—j) sin™" ps(k)

ps(k+14)] +k(i, ~k, 5 — k) (10)

Also the estimated correlation gy computed in (7) satis-
fies the following Central Limit Theorem +/n(gs — pg) =
N(0,Z%) where 7 denotes the I x | matriz with elements

+sin~! pg(k - j) sin™?

1/2 w2
A)z Hij (11)

2 ,4\1/2
oi = (1=05()) " (1 - 05(9)
Theorem 4 The parameter estimate & computed in (8)
based on the observations zi,...,z, satisfies

Vn(a—a) = N(0,E

= & da

da’
EI
3p5 3!’5

(12)

=%) where =

Z% is a l x | matriz with elements £;.

Remark: Notice that =% in Theorem 4 is messy to compute
since 8a/dpg needs to be evaluated analytically (this can
be done using symbolic packages like MAPLE). For this
reason, when presenting an order estimation algorithm in
Sec.5, we shall work with the asymptotic variance of the
correlations £ of Theorem 3 ! Note that for the AR(1)
case da/dpg = 1.

4. MARKOVIAN VARIANCE
APPROXIMATION

In general it is extremely difficult to compute the zero-
crossings variance pi; (10) due to the presence of the 4-
th order cumulant term x. However, as shown in {2], is
many cases it is reasonable to approximate D;(1) by a first-
order 2 state Markov chain. In particular, for continuous
spectrum processes (such as ours), this Markovian approx-
imation holds surprisingly well (see [2], pg 180 for details).
In this section we use this Markovian assumption to obtain
a computable expression for u and hence to compute X*

Assumption 1 D.(1) € {0,1} defined in (6) is a discrete-
time two-state first-order homogeneous Markov chain with
transition probability matriz V = (Vi;), ¢,; € {0,1} and
Vii = vwo = P(D:(1) = 0|D—2(1) = 0), Voo = v =
P(D:(1) = 1|D:-1(1) = 1) and steady state probabilities
(g p)' where

(¢ p) 2 (P(D:(1) =0) P(D:(1) =1))  (13)

Assumption 1 yields closed form expressions for p;; and
hence X*. Also the asymptotic variances are positive by
construction.

Lemma 1 The transition probabilities V and steady state
probabilities © (13) of the Markov chain D¢(i) can be ez-
pressed in terms of the transition probabilities A\; (4) of
the binary time-series X; as # = (M 1 — A1), w =

(2/\1 + Az — 1)/(2 /\1), v = (1 -2 +/\2)/(2(1 — Al))

1¥7 is the asymptotic variance per unit data length.
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Characterization of offspring sequences: In order to
compute pi;, it is necessary to first characterize the event
{D¢(3) = 1} in terms of sequences of D (1).

Definition 2 If a particular sequence of (D¢(1), ..., Di—i(1))

is equivalent to the event {D:(i) = 1}, we call such a se-
quence an “offspring” of the event {D.(i) = 1}. Let Ci,
i > 1, denote the set of these 2"~ possible offspring, i.e., if
g=(91,---,9:i) is an i-length binary sequence then

gEC: if (D:(1)=g,..
(10

We have the following characterization of C;.

Lemma 2 An i-length binary sequence g = (g1,...,9i) €
C; if
(g +(GE-Dg2+gs+ - +gi-1]+g) mod2=1 (15)

Clearly C; has 27! elements because out of the 2* possible
i-length binary sequences, only 2! of them which satisfy
Lemma 2 belong to C;.

Computation of 4: The following is a constructive method
for computing p;; = cov{D(i), D(j)} defined in (9), (10):

Denote 7% (t — k) 2 cov{D.(i), Dx(5)}.

Theorem 5 Under Assumption 1, for sufficiently large n,
pij, 4,7 €4{1,2,...,} in (9) is computed as

=2 1—2 + -
ii i i n. +1,
mis =130 + Q73O+ Y _B(-)+ T2 (16)
t=1 t=1
where a = (v1 — p)/q, and

=3 Y Vaahi Vhang o Vaynsoy (26(h5 — 1) = 1)
9€C; heC;
(1=70) Va1 Vos 03 Vi gim1 7o
nij = Z Z Vhshy Vag g - Vayni_y (28(g5 — h1) — 1)
g9€C; heC;j
(A =7n) Vo301 Vasga - Vaigiy Thj (7)
In (17), 6(z) =1 if £ = 0 and 0 otherwise.

Remarks: B B
1. When i = 3, then v5(t) = 75(~t) and 5} = 5. So
denoting 7:i; = 5, = n;; we have from (16)

-2 ..
i it 20"t
wi = 150)+2 ) 180+ 12—, i€{L,2,...,} (18)
t=1

2. It is straightforward to compute nf]— and 7;; in (17) nu-
merically. For example when 7,7 = 1 we have

We now use Theorem 5 (along with Theorems 3, 4) to esti-
mate the order of AR processes given one one-bit quantized
data {X:} (Sec. 5), and to explain why BSEA can yield
better estimates than MYW in some cases (Sec. 6).

. De_i(1) = gi) implies D (i) =1

5. ORDER ESTIMATION USING {Xr}

Given observations (r1,...,Zn) of the binary time-series
{X:}, based on Theorems 3 and 5 the following algorithm
to test for an AR(I) model within the class of AR models:
1. Compute the asymptotic variance of correlation ©% =
(a7;) defined in (11). This consists of:

(i) For i = 1,...,1, estimate ; and hence ps{i), @i using
BSEA of Sec.3. A

Then assume A; = A, a; = d; and ps(i) = ps(i) for i =
1,...,1. (see Remark 2 below).

(ii) For ¢ > I, compute ps(z) = Z;=1 a; ps(i — 7), A using
(5) and 0% = (1 — p%(i))7* pii/ K? where pi; is computed
using Theorem 5, (18).

The terms v5(t), ¢ =0,...,4 — 2 in (18) are computed as

B0 = A(1-X)
15(t) = Z Z Uhg hy - Vhyyy by [6(Resr — g1)
9€C; heC;

5(ht+2 - 92) cee 5(}“ - gi—t) ~ Vhygz hegr -+
Vhihi—1 Thi Vg 91 --- Vg, g;-:-1]
Vgimtg1 Gimt ++ - Vgigiy Mg (20)

2. Compute the sample correlations ps(z), i > ! based on
(z1,...,2n) using BSEA.

If ps(i), i > I lie between the limits ps(s) & 1.96 (07 /n)'/?
then from Theorem 3 we can infer with 95% confidence that
the series is generated by an AR(!) model.

Typically, given the binary data (z1,...,z,), start the
test with a AR(0) model and increment the model order
until Step 2 above holds. The minimum model order  for
which Step 2 first holds is taken to be the model order
(within the class of AR models).

Remarks:

1. White noise test: Actually for an AR(0) model the above
test is somewhat simplified as follows: For an AR(0) model,
ie, S =2, p=¢=v =v; =0.5 and so pi; = 1/4 and
pi; =0, 1 # j. So based on Theorem 5, if ps(3),: =1,2,...,
lie between +£1.96 n™1/2 x/(2 K.) then we can say with 95%
confidence that the series is white noise.

2. The assumption in Step 1i) that a; = d;, etc for i < 1 is
standard in preliminary order estimation, see[3], Chapters
7,8,9. Note that all the variables in Step 1 are computed in
terms of these “true” parameters a;i, A, pi, 1 < 1.

6. ASYMPTOTIC VARIANCE OF MYW AND
COMPARISON WITH BSEA

The MYW algorithm yields estimates of a based on the
un-quantized observations g1, ..., yn of the process {Y:} de-
fined in (2).

A consistent estimate of ps(i) based on y1,...,yns is:

T T
ps() = (140%/) O wew-i/ Y 9d), i#0  (21)

The MYW uses the Yule-Walker equations (8) with
ps(t) instead of ps(s) where ps(i) is evaluated in (21).
Let & denote the MYW estimate of a based on y1,..., yn.
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Theorem 6 For an AR(1) model, the MYW estimate & =
d1 is distributed normally as \/n(@ — a) = N(0,ZY) where

2 2 2
=v o= % [ 28
=T (1—a2)(“ +1 (1+a?,,))
2 2
+<a2+1—2(14-;0'§3+a'2”) (22)

Comparison of BSEA with MYW: Based on the ex-
pressions (19) and (22), we can draw the following conclu-
sions:

1. Unlike MYW where when 0y, > 0, ZY — 0 as ¢ — 1,
for the BSEA Z=* — 0asa — 1. Soasa — 1, Z¥ > =°
meaning that BSEA yields more accurate estimates than
MYW for a fixed data length.

2. When a — 0 and oy, = 0 then from (22) and (12),
(19) we have =%/Z¥ = 7? /4 which is the result given in [1].
That is, in zero multiplicative noise and for small a, BSEA
required roughly twice (= 7°/4) the data length to yield
comparable estimates to MYW.

3. In Figure 1 we plot the Z*/ZY versus oy, for various
values of a. When the ratio is less than one it means that
BSEA performs better than MYW.

For example when a = 0.9 and oy = 1, E*/ZY = 0.5.
This means that MYW would require twice the data length
to achieve the accuracy of BSEA. For a = 0.85, 0.8 the
range g, over which BSEA does better than MYW gets
smaller. When a = 0.7 MYW always does better than
BSEA, although for o, = 0.6 the estimates are comparable
with BSEA.

7. SIMULATION EXAMPLE

Simulation results on the performance of BSEA for param-
eter estimation are presented in [4]. Our aim here is to
present an example of the order estimation algorithm.
AR(4) example: a= (0.4 —0.4 —04 0.2), g, = 1.0,
ow = 0.0, n = 20,000. Table 1 shows the tests for AR(2),
AR(3) and AR(4) models, respectively. The estimated cor-
relations lie within the 95% confidence upper and lower
bounds only for the AR(4) test; showing that within the
class of AR models, we can infer with 95 % confidence that
the underlying model is AR(4). Indeed, for the AR(2) and
AR(3) case, none of the estimated correlations lie within
the bounds.

Note: For detialed proofs and simulations see [5].
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