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Abstract

When a system is unobservable, the error covari-
ance associated with a Kalman filter will be nearly
singular. As a consequence, an optimum estimation
does not exist.

In this paper, we show that this system can be
transformed into a nonlinear system with a linear
measurement equation. In addition to other useful
features, this transformation also serves to decouple
the state in such a way that an observable part can
be extracted and estimated while no information can
be gained and processed for the unobservable part.

1 Introduction

The concept of observability was originally intro-
duced by Kalman for linear deterministic systems
[1]. A system is defined to be observable if the state
of the system can be uniquely determined from past
observations. A linear system is observable if and
only if the rank of the corresponding observability
matrix is equal to the dimension of the state vector.
The concept of observability has also been extended
to the nonlinear systems. For nonlinear case, most
of the results obtained are true in local sense [2].

In Kalman filtering theory, the observability of a
linear stochastic system implies that the error co-
variance matrix is stably bounded and converges to
a steady state [3]. The Kalman error covariance sat-
isfies a matrix Riccati equation whose stability can
be demonstrated from a stochastic observability ma-
trix, i.e. the Fisher information matrix (FIM).

When a system is unobservable, the error covari-
ance associated with a Kalman filter will be nearly
singular, exhibiting some unstable behavior or be-
come “ill-conditioned.” Unstable behavior implies
that the error covariance matrix will be nearly sin-
gular, leaving some exceedingly large elements. In
such a case, the given observation or measurement
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equation does not provide a set of sufficient statis-
tics for the state. As a consequence, an optimum
estimation does not exist.

For a nonlinear system, it is difficult to give a
precise definition of observability. Typically, an ex-
tended Kalman filter (EFK) is employed to generate
simulation results. Observability of the nonlinear

- system is assumed to exist if and only if the estima-

tion and the error covariance converge. In this pa-
per, we deal with a linear deterministic system with
nonlinear measurements corrupted by additive white
Gaussian noise. A property of this system is that it
can be transformed into a nonlinear system with a
linear measurement equation. The original system is
unobservable. However, the new state consists dis-
tinctively of two parts: an observable part and an
unobservable part. In other words, this transforma-
tion serves to decouple the state in such a way that
an observable part can be extracted and estimated
while no information can be gained and processed
for the unobservable part.

In the next section, a mathematical description of
the dynamic system is given. Observability is de-
fined via FIM. In Section 3, the technique of a non-
linear transformation that leads to the decoupling
of state estimation is explained. Finally an applica-
tion of the technique to a three dimensional target
tracking problem with conical angle measurements
is illustrated in Section 4.

2 System Description

We consider a linear system described by

x(k+1) = ®x(k), k=0,1,--- (1)
where x € R" is a nx 1 state vector and ® isan nxn
state transition matrix !. The initial state vector
x(0) is a normal random vector with zero mean and

2024



covariance Py.
The observation (y(k) on x(k)) is made via the
nonlinear equation

y(k) = h[x(k)] + w(k) (2)
where h: R™ — R™ is assumed to be continuously
differentiable, w(k) is a zero-mean white Gaussian
sequence with a covariance given by

Elw(k)w(j)] = Ré(k, j)

where the prime denotes the transpose of a vector,
6(k,7) is the Kronecker delta and R is an m x m
positive-definite symmetric matrix.
For the observation system described by (1) and
(2), the FIM is defined as [3]
k ’
1k =3 @y R @

=1

(3)

evaluated along the trajectory x(i)fori =1, 2, ---.
J1 is a nonnegative definite symmetric matrix. In
recursive estimation theory, J; provides a measure-
ment of the observability of the system. The signif-
icance of the FIM can be seen, for example from
its relationship to the Cramer-Rao Lower Bound
(CRLB) P:. The latter has the property, for any
unbiased estimate X, the error covariance P, is no
less than P}, i.e.

P, > P’

The CRLB therefore represents the “best” that
can be achieved by an unbiased estimator along a
particular trajectory. The FIM and CRLB are re-
lated through the following [4].

P.7N(k) = (7F)PFH (@) + Du(k). (4)
Without loss of generality, we let P271(0) = 0 (see
[3] p.231) and obtain

P;7l (k) = J1(k). (5)

A large J; implies a small P} and hence a small
error covariance Zin actual simulation. In this sense,
the FIM is a measurement of observability. A sys-
tem is said to be completely observable if and only if

1% is time-dependent, i.e. & = ®(k+1, k). But for brevity,
we do not indicate this dependence.

P (k) = Jy(k) is positive definite for some k > 0
[3].

We now define a system to be unobservable if
|J1(k)} = 0 for all k£ and along x(-). From (5), we
now have

P: (k) =0

and P7 is ill-conditioned, containing some extremely
large elements.

It has been shown [4] that the CRLB satisfies
equations identical to those satisfied by the error co-
variance of EKF. Consequently, when |J;| = 0, the
error covariance becomes unstable and the filtering
(or estimation) algorithm degenerates. Thus, an un-
observable system is manifested by the unwieldy col-
lapsing of the error covariance of EKF.

3 State Decoupling

Suppose there is a function g: R™ — R™ such that

1

(i) the inverse function g=?! exists, and

(i)

hig™'(z)] = Hz (6)
where H is a constant matrix.
Let
z = g(x) (7)
and hence -
x = g7 !(z). (8)

Substituting (8) into the state equation (1) yields
g7 [z(k +1)] = g~ [2(k)] (9)

from (7) and (9), we have a new state equation

a(k + 1) = f[a(k)] (10)

where

f=gleg™]. (11)

The measurement equation (2) now becomes

y(k) = Hz(k) + w(k) (12)

The original model of a linear system (1) with non-
linear measurements (2) are now transformed into a
second model with nonlinear system (10) and linear
measurements (12). this type of transformation was

®Here, the magnitude of a matrix is measured by its
determinant.
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employed in the development of the modified spher-
ical EKF' [3]. Let us now study this transformation
on the observability.
Let Jo(k) be the FIM of the new (transformed)
system (10) and (12), i.e.
Ja(k) =

) [(2—5@52—5'1)’*’] (H'RH) [(%@;‘3{3"“]
= (13)

It then follows from (3) and (13) that J; and J,
are related as follows

J1

1

dog’' . Og
= —=J,==.

ox “0x

When the original system is unobservable, i.e.
|J1| = 0, then clearly, the transformed system is still
unobservable (|J,| = 0).

However, under some conditions, the state z can
be decoupled into two componeénts: an observable
component z; of dimension p and an unobservable
component z; of dimension n—p, where pis the rank
of J,. This is the main result of our paper which will
be shown in the following.

First, due to the fact that J; is a non-negative
definite symmetric matrix, we can express J; as 3

(14)

_|Iz20
Jo = [ 0 0] (15)
where I is a p X p positive definite matrix.
We then assume that
H = [H; 0] (16)
and dg g1\ -
g g : F, F,
L= =F = 17

where H; is m x p, F; is p X p and F; and F3 are
matrices of appropriate dimensions.
Substituting (16) into (12), we have

y(k‘) = H]Zl(k) + W(]C)

Also, (16), (17), and (18) suggest that Kalman
filter equations can be written for z;, independent of
z3. Especially, the discrete matrix Riccati equation
for P; (k) now satisfies the equation

P;,(k+1) = F1P; (k)F; - F1 P, (k)H] x

(18)

3Some elementary row operations, which may be needed to
bring J; into this form are not included in the discussion here.

[Hi Pz, (kH)H; + R]7'HLP; (K)F. (19

As stated in [4], the EKF covariance propagation
equations linearized about the true unknown trajec-
tory provide the CRLB. Therefore, P} in (19) is the
CRLB of z;.

In (19), H{R~'H; is positive definite. It can then
be shown that its solution P} is bounded, i. e.

[Pz, (k) <6 (20)
regardless of the trajectory {x(k)}72, along which
F, is evaluated. Therefore, for any k

P; "'(k)~ 13 >0 (21)
which shows that P; (k) is not ill-conditioned and
the EKF filtering algorithm for z; will not degener-
ate.

It can be seen that the key role in decoupling is
played by the function g. The proper choice for g
is motivated by some physical consideration involv-
ing transformation of coordination systems. One of
the earlier papers that dealt with this subject is by
Holeezer, Jolsson, and Cohen [6] in which, their dis-
cussed the modified polar coordinates in bearings-
only target ranging. A more recent report appeared
in [7] and is briefly mentioned in the next section as

_ an example.

Even though observability on z; does not neces-
sarily imply observability on any components of the
original state x, it can be argued that such a decou-
pling enables us to gain observability on a subspace
of the transformed space z. This will often provide
useful information and insight into the original esti-
mation problem as can be seen in the tracking prob-
lem mentioned above.

4 Applications to the Tracking
Problem

Considering an underwater tracking system prob-
lem [5], let (Rz, Ry, R.)’ be the relative position (in
Cartesian coordinates) between ownship and target,
and let (V;, V)’ be the relative horizontal velocity.
We assume ownship are target both travel at con-
stant velocity and depth (V, = 0). the state vector
is x = (Rg, Ry, R, V;,Vy). Then & satisfies the
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state equation (1) when & is given by

100T 0
0100T
00100
00010
00001

(22)

and T is the sample time interval. Ownship’s ob-
servation of x is given by the conical angle measure-

ments y(k) —_ g(k) + 'w(k) (23)

where (see Fig. 1)

9=cos"1{ 5 Ry 1}'
(R%Z 4+ RZ 4 R2)?

(24)
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Figure 1: Root ‘Mean-Squared Error vs. SNR

We now have a linear system with nonlinear mea-
surements from which x is to be estimated.

The FIM J, for this system can be computed from
(3), (22), and (24) by first evaluating the partial
derivatives of § with respect to Rz, R,, and R.. It
can be shown that |J;(k)| = 0, i.e. the system is not
observable.

The modified spherical coordinate system has
been seen for a tracking system of this type. In this
system, the transformed state is given by

. 1
z = (0* 9, P "RTa ¢)/

(25)

where 6 is the conical angle rate, p = %j, R =
(R§+R§+Rf)%, and ¢ = tan~'(R,/R,). Expression
for g can be found in [7].

In terms of z, the measurement equation can be
written as

y(k) = Hz(k) + n(k) (26)

where H = (1, 0, 0, 0,0). It can then be shown that

conditions for decoupling (16) and (17) are with F,
being a 3 X 3 matrix. We therefore conclude that
the first three components of the modified spherical
coordinate vector z are observable. Even though the
entire state, either x and z, is not observable. The
same conclusion has been reached before [8] but our
approach, which is based on the FIM and decoupling
of the state provides a more solid theoretical founda-
tion and can be applied to a broad class of models.
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