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ABSTRACT

Because true Mazimum Likelihood (ML) is too expensive,
the dominant approach in Bernoulli-Gaussian (BG) myopic
deconvolution consists in the joint maximization of a sin-
gle Generalized Likelihood with respect to the input signal
and the hyperparameters. This communication assesses
the theoretical properties of a related Mazimum General-
ized Marginal Likelihood (MGML) estimator in a simplified
framework: the filter is reduced to identity, so that the out-
put data is a mixture of Gaussian populations. Our results
are three-fold: first, ezact MGML estimates can be effi-
ciently computed; second, this estimator performs better
than ML in the short sample case whereas it is drastically
less expensive; third, asymptotic estimates are significant
although biased.

1. INTRODUCTION

The problem of the restoration of spiky sequences distorted
by a linear system and additive noise arises in seismic ex-
ploration, non-destructive evaluation and biomedical engi-
neering [1].

Such problems are classically dealt with a discrete-time
convolution model for the observations: z = hA*r +n. h
is the filter, n is a stationary white Gaussian noise with
variance r, and r is the input to be restored. The fil-
ter k is assumed known hereafter. The ill-posed nature of
the induced deconvolution problem may be coped within
a Bayesian framework: prior information about the spiky
structure of the input is introduced in the form of a prior
probability model. Here we model the input r as the ob-
servable part of a Bernoulli-Gaussian process (BG) [1]. BG
models may be seen as discrete-time compound processes
(¢,7). g and r model the time location for a spike, and its
amplitude, respectively. A BG process is made up of inde-
pendent samples, each one being defined as a pair of ran-

dom variables (RVs) X = (Q, R). Q is a Bernoulli variable

such that A 2 Pr(Q = 1) is the probability of occurrence
of the spike. R is a zero-mean Gaussian RV with variance
Qrz. Thus the probability distributions associated with
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the problem are controlled by the vector of hyperparame-
ters @ = (A, rz,7n). We address the practical problem of
hyperparameter identification.

Up to now, Generalized Likelihood (GL) maximization
has been the dominant method in BG deconvolution prob-
lems [1] mainly because of its practicability. GL estima-
tion corresponds to the maximization of the joint likelihood
p(z,7,q,0) with respect to (w.r.t.) r, ¢ and 6. Such meth-
ods have been successfully implemented in various areas
[2, 3] but are generally disregarded because of their non-
consistency [2]. However consistency is relevant only for
large-sample signals and it is of no critical importance in
short-data sets applications.

Gassiat et al. [4] presented a theoretical study of the
maximum GL (MGL) estimator when the filter is reduced
to a delta function in order to be able to carry out math-
ematical derivations. Then the output signal is a mixture
of two zero-mean univariate Gaussian distributions. Esti-
mation of the parameters governing a Gaussian mixture is
yet a well documented area for consistent estimators such as
ML [5]. But GL techniques (also referred to as classification
likelihood methods [2]) are considered as ad-hoc techniques
and are far less documented.

The results of Gassiat et al. [4] established the poor
behavior of the GL criterion, in particular the inability to
ensure existence of MGL estimates. Conversely, when esti-
mates exist they may exhibit a small bias.

The aim of this correspondence is to provide, in the
same context, an original statistical justification of one al-
ternative methodology based on a Generalized Marginal
Likelihood (GML) p(z,q,0) w.r.t. ¢ and @, where ampli-
tudes of the spikes have been “integrated out”.

The conclusions of this study on MGML estimation
qualify those drawn by Gassiat et al. on GL criterion: in
the finite-sample case, existence of a global maximum for
the GML is assessed and an efficient algorithm for ezact
maximization with a finite number of computations is de-
rived. Unlike MGL estimates, MGML estimates possess
an interesting scale invariance property (SIP). A presented
Monte Carlo experiment shows that MGML estimation ex-
hibit smaller bias and mean square error than ML estima-
tion for small samples. Furthermore, the associated com-
putational load is much lighter than that of ML estimation.
Finite sample estimates converge toward the global maxi-
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mum of the asymptotic GML under the reasonable assump-
tion of uniqueness of this maximum. A further numerical
experiment shows that the MGML estimator is not con-
sistent and that asymptotic bias ranges from moderate to
large, depending on the amount of noise and the density A
of the pulse process.

2. PROBLEM STATEMENT

2.1. Formulation as a mixture problem

In the absence of distortion, the input-output equation re-
duces to a spike process corrupted by an additive noise

Z = R+ N. It turns out that (Zx | @& = ¢) is a zero-
mean Gaussian RV of variance gr; + rn, in other words Zx
is a mixture of two univariate zero-mean Gaussian RVs. Let
z denote a sample drawn after the distribution of Z* con-
trolled by the so-called “true” parameters 8* = (A%, 7}, 7).

We assume these parameters belong to © £]0,1[x]0, +oof[?,
and we address the problem of estimating 8* on the basis
of the sample z = [z1,..., zn].

Although estimation of the parameters of a Gaussian
mixture has drawn a quantity of works in the statistical
field [3, 6], we are not aware of any results specific to the
problem addressed here. Beyond the methods available in
the literature, great emphasis has been put on ML estima-
tion [5]. Before proceeding on the GML estimation general
and particular results pertaining to ML estimation are re-
called.

2.2. Background on ML estimation

Let f(z;r) denote the density of a univariate zero-mean
Gaussian RV of variance r, then the ML estimate 8 is the
argument of the maximum of pz(z;0) when & spans O,
which takes the form:

N

pz(20) = H (Af(ziyrz +70) + (1 = A) f(2i,70)). (1)

i=1

pz(z;0) is bounded above and admits a global maximum
w.r.t. @ [7], but local maxima might exist [6].

In the wider context of Gaussian mixtures the ML yields
consistent and asymptotically efficient estimates, provided
some regularity conditions on the likelihood be satisfied [5].
The EM algorithm [5] can be implemented for likelihood
optimization in a very simple and heuristic manner, more-
over it guarantees a monotonic increase of the likelihood
and at each iteration it maintains the parameters inside
the domain of definition. This feature is not shared by
the general optimization tools such as gradient and New-
ton methods and can be important in practice. However,
convergence of the EM algorithm is guaranteed only to a
stationary point of the likelihood and it can be dramatically
slow as was experienced during our simulations.

2.3. MGML estimation
The GML criterion is defined by

LomL(e,9) = rz,Q(2,4;8) = pz/Q(21g; 72, 7n) Pr(Q = ¢;

The MGML estimate (§, ) is the argument of the maxi-
mum of Lgpp, when (q,0) spans {0,1}" x ©. Ther it can
be easily shown that:

N
6= arg gleag {H max {Af(zi, 7z + ), (1 — /\)f(z.',rn)}} .

i=1

Comparison of the latter expression with (1) shows that
the GML criterion may be viewed as an approximation
of the likelihood. In the next sections, it will be shown
that this approximation yields much algebraic simplifica-
tions at the expense of the loss of consistency. Conversely,
the Monte Carlo experiments of Section 4.1 demonstrate
that the MGML estimator yields smaller bias and MSE than
ML in the finite sample case.

3. RESULTS ON GML ESTIMATION

In this section we state without demonstration! the main
results pertaining to MGML estimation both in the finite
sample case and the asymptotic limit.

3.1. Finite sample properties

We may consider that 27 > 22 > ... > z% at the expense of
a swap of subscripts. Then we have the following theorem

Theorem 1 : Let Jx(n) be defined on {0,1,..., N} by?

n 2 N 22
e

then the MGML estimate 0 exists almost surely (a.s.). Itas
given by:

E N 2 Ne 2
Zg z
k=N+1 . =1 “k -
3 Foo= k=1 i

N-N, °° N,

A= % , Tn =
where: N, = argog‘lélN JIn(n).

A closed form expression for N. could not be derived. Nev-
ertheless, the computation of 6 associated to one signal
sample 2z is extremely simple: it mainly requires the nu-
merical evaluation of a simple function for n € {0,1,..., N}
whereas ML admits no exact computation involving a finite
number of operations. The Monte Carlo study of Section 4.1
makes intensive use of Theorem 1 in order to efficiently com-
pute MGML estimates.

Expression (2} enables us to assess easily a SIP for
the MGML estimator, unlike the MGL estimator of [4]:
INn, A, #z,7n and N. depend implicitly on z, what happens
if z is replaced by oz where @ > 0 is an arbitrary “scale
factor” 7 It can easily be seen from (2) that Jy(n,az) =
Jn(n,z) — 2N Ina; then Jy(n, @z) and Jy(=n,z) have the
same minimum. The SIP property follows immediately:

Maz) = M(z), #n(az) = a®fn(2)and #,(az) = a*Fa(2).

1Full developments can be found in [7]
2With the convention Oln% =0
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3.2. Asymptotic behavior

For all N exists a MGML estimate denoted Ox. This
section examines the limiting behavior of the series (8n).

As stated in the following Theorem 2 convergence of (fx)
is linked to the existence and the uniqueness of a global
minimum of function Jo of a unique threshold variable
T €]0, +oo[:

750(T)
A% (T)

5 Fo0(T)

Joo(T) £ Aeo(T) In

where Aoo(T) = E [Liz251y], 00(T) 2 E [2%1(2051y],
Xoo(T) & 1= Xoo(T), 600(T) £ E[2%] = 00(T) and Z

denote a random variable distributed as Z; for instance.

Theorem 2 : Let (6n) be any series of MGML estimates.

Assume Joo has a unique minimum T, thenlimy .o Oy =

@ € © where:

A=), # _ (D) L ow(D)  2u(T) (4)
T T @ T T Ae(@) A

Joo admits at least a global minimum 7" €10, +c0[ [7]. Up to
date, no proof for the uniqueness has been found because
of the tedious analytical expression for the derivative of
Joo. However, practical studies of Jo, for values of 8* scat-
tered over © support the assumption of uniqueness. Further
study of the asymptotic bias can be performed numerically
only, corresponding results are reported in section 4.2.

4. NUMERICAL EXPERIMENTS

4.1. Finite sample ML and MGML estimates

The mean estimate and mean square error (MSE) were com-
puted for three data sets whose features are gathered in
Table 1. ’

Due to the SIP we may keep the variance r5 = 1 and
let the remaining parameters vary. The label “SNR” in
Table 1 stands for “signal-to-noise ratio” which is defined
as 10log(A*rz /7). The SNR indicates how difficult the
problem is. The 10 dB SNR and A* = 0.1 parameters for
set A are standard in the context of BG deconvolution. The
samples were gathered by N within each set in order to
study the statistical behavior (bias and MSE) of estimates
based on samples of size N. The different graphs represent
bias or MSE as a function of N.

Whereas MGML estimates are obtained quickly using
the results of Section 3.1, computation of ML estimates is
much more demanding. In order to deal with potential local
maxima of the likelihood we proceed in two steps. First the
likelihood is computed on a grid spanning the parameter
space, then the maximum over the grid initiates an EM
algorithm [5, 6].

Figure 1 summarizes the results relative to mean esti-
mates (top figure) and MSE (bottom figure) for A of set A.
MGML performs better than ML until N = 50 in terms of
both bias an MSE. Then asymptotic behavior of ML takes
over MGML in terms of bias.

Figure 2 compares the performances of ML and MGML
in terms of their “Total relative MSE”. It is defined by

E[(A/X" = 1)? 4 (72 /72 = 1)* + (#a/rs — 1)*] in order to
account for the different parameter scales. Figure 2 indi-
cates that the statistical behavior of MGML improves when
A* decreases and when the SN R increases.

To a certain extend these results are consistent with pre-
vious reports of empirical success of GL-type approaches,
and suggest they would perform better in the frequent con-
text of small data set versus good contrast.

4.2. Asymptotic MGML estimates

The graphs on Figure 3 compare the performances of an
asymptotically unbiased estimator like ML, the MGML es-
timator and the MGL estimator of Gassiat et al., for differ-
ent values of §*. For each value of 6, 0 is computed using
first a numerical minimization of Joo (T, 8*), and second the
identity (4). The SNR is 10 dB, A* spans 0.01 and 0.4. For
the sake of clarity, only the estimates of A versus the true
value A* are reported.

Because the MGL estimator does not exhibit any SIP
two graphs of MGL estimates corresponding to rj, =1 and
rn = 0.1 were presented. MGL and MGML estimates show
a systematic negative bias. The bias is moderate for small
A*, and cannot be neglected otherwise. However, the esti-
mates remain significant, at least for the chosen SNR. MGL
estimates do not always exist as shown on the graph for
5 = 0.1. Further results reported in [8] show that increas-
ing the SNR diminishes the bias.

5. CONCLUSION

The question of relevance of GL techniques for BG myopic
deconvolution led us to the study of a simpler problem,
namely the MGML identification of a Gaussian mixture.

The results obtained on this MGML estimator alleviate
some of the setbacks of a former MGL estimator [4]. In
particular, MGML estimates always exist and enjoy a SIP.
An algorithm for exact MGML estimation is derived and
it is much faster than classical ML estimation methods.
A presented Monte Carlo experiment shows that MGML
should perform better than ML in the frequent context of
small data set and good contrast.

The asymptotic convergence of MGML estimates is as-
sessed under a reasonable assumption. A further numerical
experiment quantifies the asymptotic bias of MGML esti-
mates. This bias ranges from moderate to large but corre-
sponding estimates remain significant.

In the broader context of BG deconvolution, GL-type
criterions have been used mainly for practical purposes, and
showed practical success. However MGL estimates do not
always exist because GL criterions are not bounded above
and a local maxima may not exist. MGML estimation pro-
vides a satisfactory answer to this problem.
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Set | Total sample size | \* s n | SNR
A 10* 0.1 { 100 | 1 | 10dB
B 10° 0.01 {1000 | 1 | 10dB
C 3.10% 01 | 312 1| 5dB

Table 1: Features of tested data sets.
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Figure 1: Bias (top) and MSE (bottom)for parameter X of
set A versus sample size.
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Figure 2: Comparison of total relative MSE for sets A (top),
B (middle) and C (bottom) versus sample size. MGML al-
ways performs better than ML for small samples and ML
takes over MGML in the asymptotic limit. The range where
MGML remains competitive increases when the SNR in-
creases and when A* decreases i.e. when the contrast is
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Figure 3: Different asymptotic estimates of X versus A*,
keeping SNR = 10log(A*r;/r) = 10. The estimators are
systematically biased, but the estimates remain significant.
(—) True A. (- -) GML estimates. (...} GL estimates for
rn = 1. (o00) GL estimates r) = 0.1. Note that the last
curve is interrupted due to non existence of corresponding
estimates.
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